TY - JOUR
T1 - Laser transverse dual differential confocal radius measurement with high efficiency and high precision
AU - Li, Jinjin
AU - Tang, Liang
AU - Li, Qi
AU - Cui, Jian
AU - Cui, Mingtuo
AU - Xu, Ke Mi
AU - Zhao, Weiqian
AU - Yang, Shuai
N1 - Publisher Copyright:
© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
PY - 2022/7/4
Y1 - 2022/7/4
N2 - To meet the need for rapid, high-precision, and non-contact measurement of the radius of curvature (ROC) for large quantities of spherical optics, a radius measurement method based on transverse dual differential confocal (TDDC) detection is proposed in this study. First, a template S0 with a known ROC, R0, is axially scanned on its confocal position to obtain the fitted linear function lTDDC(z) using TDDC. Second, the template S0 is replaced by Sn, which is one of the test sample in large quantities, then the single point TDDC intensity ITDDC(∆zn) is captured without scan, which will be applied to obtain the defocus ∆zn according to the linear function lTDDC(z). Finally, the ROC Rn under test is calculated using ∆zn and R0. Simulation and experiments show that the measurement accuracy can achieve 8.0 ppm, and the measurement efficiency is 60 times higher than that of the traditional differential confocal scanning measurement. Measurement based on TDDC only requires scanning once and replacing Sn N times to realize the fast, high-precision, non-contact ROC detection of N pieces of spherical optics, which enables the high-efficiency and high-precision measurement of large quantities of spherical optics.
AB - To meet the need for rapid, high-precision, and non-contact measurement of the radius of curvature (ROC) for large quantities of spherical optics, a radius measurement method based on transverse dual differential confocal (TDDC) detection is proposed in this study. First, a template S0 with a known ROC, R0, is axially scanned on its confocal position to obtain the fitted linear function lTDDC(z) using TDDC. Second, the template S0 is replaced by Sn, which is one of the test sample in large quantities, then the single point TDDC intensity ITDDC(∆zn) is captured without scan, which will be applied to obtain the defocus ∆zn according to the linear function lTDDC(z). Finally, the ROC Rn under test is calculated using ∆zn and R0. Simulation and experiments show that the measurement accuracy can achieve 8.0 ppm, and the measurement efficiency is 60 times higher than that of the traditional differential confocal scanning measurement. Measurement based on TDDC only requires scanning once and replacing Sn N times to realize the fast, high-precision, non-contact ROC detection of N pieces of spherical optics, which enables the high-efficiency and high-precision measurement of large quantities of spherical optics.
UR - http://www.scopus.com/inward/record.url?scp=85132525923&partnerID=8YFLogxK
U2 - 10.1364/OE.461056
DO - 10.1364/OE.461056
M3 - Article
C2 - 36237002
AN - SCOPUS:85132525923
SN - 1094-4087
VL - 30
SP - 24481
EP - 24496
JO - Optics Express
JF - Optics Express
IS - 14
ER -