TY - JOUR
T1 - Knowledge-graph-enabled biomedical entity linking
T2 - a survey
AU - Shi, Jiyun
AU - Yuan, Zhimeng
AU - Guo, Wenxuan
AU - Ma, Chen
AU - Chen, Jiehao
AU - Zhang, Meihui
N1 - Publisher Copyright:
© 2023, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
PY - 2023/9
Y1 - 2023/9
N2 - Biomedical Entity Linking (BM-EL) task, which aims to match biomedical mentions in articles to entities in a certain knowledge base (e.g., the Unified Medical Language System), draws dramatic attention in recent years. BM-EL can help to disambiguate medical terms and link to rich semantic information in the biomedical knowledge base, which can act as an essential means for many downstream applications. Although entity linking tasks have been investigated in the general domain and achieved great success, many challenges remain in the biomedical field, for instance, highly complex terminology, less training data, and entity ambiguity. In this survey, we categorize BM-EL methods into rule-based, machine learning, and deep learning models according to the development of the model paradigm and provide a comprehensive review of each approach. In-depth study of current BM-EL efforts, we group the model architectures into four categories: joint entity recognition and linking, graph-based global entity disambiguation, cross-lingual architectures, and model-efficiency improvement. We further introduce six well-established datasets that are commonly used for BM-EL tasks. Furthermore, we present a comparison of the different methods and discuss their advantages and disadvantages. Finally, we discuss the limitations of existing methods for BM-EL and discuss promising future research directions.
AB - Biomedical Entity Linking (BM-EL) task, which aims to match biomedical mentions in articles to entities in a certain knowledge base (e.g., the Unified Medical Language System), draws dramatic attention in recent years. BM-EL can help to disambiguate medical terms and link to rich semantic information in the biomedical knowledge base, which can act as an essential means for many downstream applications. Although entity linking tasks have been investigated in the general domain and achieved great success, many challenges remain in the biomedical field, for instance, highly complex terminology, less training data, and entity ambiguity. In this survey, we categorize BM-EL methods into rule-based, machine learning, and deep learning models according to the development of the model paradigm and provide a comprehensive review of each approach. In-depth study of current BM-EL efforts, we group the model architectures into four categories: joint entity recognition and linking, graph-based global entity disambiguation, cross-lingual architectures, and model-efficiency improvement. We further introduce six well-established datasets that are commonly used for BM-EL tasks. Furthermore, we present a comparison of the different methods and discuss their advantages and disadvantages. Finally, we discuss the limitations of existing methods for BM-EL and discuss promising future research directions.
KW - Biomedical entity disambiguation
KW - Biomedical entity linking
KW - Knowledge base
UR - http://www.scopus.com/inward/record.url?scp=85156093032&partnerID=8YFLogxK
U2 - 10.1007/s11280-023-01144-4
DO - 10.1007/s11280-023-01144-4
M3 - Article
AN - SCOPUS:85156093032
SN - 1386-145X
VL - 26
SP - 2593
EP - 2622
JO - World Wide Web
JF - World Wide Web
IS - 5
ER -