Kalman filter with recursive covariance estimation-Sequentially estimating process noise covariance

Bo Feng, Mengyin Fu, Hongbin Ma*, Yuanqing Xia, Bo Wang

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

124 Citations (Scopus)

Abstract

The Kalman filter has been found to be useful in vast areas. However, it is well known that the successful use of the standard Kalman filter is greatly restricted by the strict requirements on a priori information of the model structure and statistics information of the process, and measurement noises. Generally speaking, the covariance matrix of process noise is harder to be determined than that of the measurement noise by routine experiments, since the statistical property of process noise cannot be obtained directly by collecting a large number of sensor data due to the intrinsic coupling of process noise and system dynamics. Considering such background of wide applications, this paper introduces one algorithm, recursive covariance estimation (RCE) algorithm, to estimate the unknown covariance matrix of noise from a sample of signals corrupted with the noise. Based on this idea, for a class of discrete-time linear-time-invariant systems where the covariance matrix of process noise is completely unknown, a new Kalman filtering algorithm named, Kalman filter with RCE, is presented to resolve this challenging problem of state estimation without the statistical information of process noise, and the rigorous stability analysis is given to show that this algorithm is optimal in the sense that the covariance matrix and state estimations are asymptotically consistent with the ideal Kalman filter when the exact covariance matrix of process noise is completely known a priori. Extensive simulation studies have also verified the theoretical results and the effectiveness of the proposed algorithm.

Original languageEnglish
Article number6719478
Pages (from-to)6253-6263
Number of pages11
JournalIEEE Transactions on Industrial Electronics
Volume61
Issue number11
DOIs
Publication statusPublished - Nov 2014

Keywords

  • Kalman filter
  • process noise covariance matrix
  • recursive covariance estimating
  • stability analysis
  • unknown covariance matrix

Fingerprint

Dive into the research topics of 'Kalman filter with recursive covariance estimation-Sequentially estimating process noise covariance'. Together they form a unique fingerprint.

Cite this