TY - JOUR
T1 - ISRIB facilitates the co-culture of human trophoblast stem cells and embryonic stem cells
AU - Xia, Shuwei
AU - Yu, Dainan
AU - Wang, Yue
AU - He, Beijia
AU - Rong, Yin
AU - Chen, Shuo
AU - Xiao, Zhenyu
AU - Wang, Hongmei
AU - Wu, Hao
AU - Yan, Long
N1 - Publisher Copyright:
© 2024 The Authors. Cell Proliferation published by Beijing Institute for Stem Cell and Regenerative Medicine and John Wiley & Sons Ltd.
PY - 2024/6
Y1 - 2024/6
N2 - The embryo-like structures (embryoids) constructed by aggregating embryonic stem cells (ESCs) and trophoblast stem cells (TSCs) have provided revolutionary tools for studying the intricate interaction between embryonic and extra-embryonic tissues during early embryonic development, which has been achieved in mice. However, due to the opposite dependence on some signalling pathways for in vitro culture of human ESCs (hESCs) and TSCs (hTSCs), particularly WNT and TGFβ signalling pathways, which limits the construction of human post-implantation embryoids by aggregating hESCs and hTSCs. To overcome this challenge, here, by screening 1639 chemicals, we found that an inhibitor of integrated stress response, ISRIB, can replace WNT agonists and TGFβ inhibitors to maintain the stemness and differentiation capacity of hTSCs. Thus, we developed an ISRIB-dependent in vitro culture medium for hTSCs, namely nTSM. Furthermore, we demonstrated that ISRIB could also maintain the hESC stemness. Using a 3D co-culture system (hESCs and hTSCs aggregate, ETA), we demonstrated that a 1:1 mixture of hESC culture medium (ESM) and nTSM improved the cell proliferation and organisation of both hESC- and hTSC-compartments and the lumenogenesis of hESC-compartment in ETAs. Overall, our study provided an ISRIB-dependent system for co-culturing hESCs and hTSCs, which facilitated the construction of human embryoids by aggregating hESCs and hTSCs.
AB - The embryo-like structures (embryoids) constructed by aggregating embryonic stem cells (ESCs) and trophoblast stem cells (TSCs) have provided revolutionary tools for studying the intricate interaction between embryonic and extra-embryonic tissues during early embryonic development, which has been achieved in mice. However, due to the opposite dependence on some signalling pathways for in vitro culture of human ESCs (hESCs) and TSCs (hTSCs), particularly WNT and TGFβ signalling pathways, which limits the construction of human post-implantation embryoids by aggregating hESCs and hTSCs. To overcome this challenge, here, by screening 1639 chemicals, we found that an inhibitor of integrated stress response, ISRIB, can replace WNT agonists and TGFβ inhibitors to maintain the stemness and differentiation capacity of hTSCs. Thus, we developed an ISRIB-dependent in vitro culture medium for hTSCs, namely nTSM. Furthermore, we demonstrated that ISRIB could also maintain the hESC stemness. Using a 3D co-culture system (hESCs and hTSCs aggregate, ETA), we demonstrated that a 1:1 mixture of hESC culture medium (ESM) and nTSM improved the cell proliferation and organisation of both hESC- and hTSC-compartments and the lumenogenesis of hESC-compartment in ETAs. Overall, our study provided an ISRIB-dependent system for co-culturing hESCs and hTSCs, which facilitated the construction of human embryoids by aggregating hESCs and hTSCs.
UR - http://www.scopus.com/inward/record.url?scp=85182227363&partnerID=8YFLogxK
U2 - 10.1111/cpr.13599
DO - 10.1111/cpr.13599
M3 - Article
AN - SCOPUS:85182227363
SN - 0960-7722
VL - 57
JO - Cell Proliferation
JF - Cell Proliferation
IS - 6
M1 - e13599
ER -