IPMC actuator-based multifunctional underwater microrobots

Shuxiang Guo*, Liwei Shi

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingChapterpeer-review

3 Citations (Scopus)
Plum Print visual indicator of research metrics
  • Citations
    • Citation Indexes: 3
  • Captures
    • Readers: 2
see details

Abstract

A variety of microrobots have commonly been used in the fields of biomedical engineering and underwater operations during the last few years. Due to their compact structure, low driving power, and simple control systems, microrobots can complete a variety of underwater monitoring operations, even in restricted underwater environments. Generally speaking, compact structure, multi-functionality, flexibility and precise positioning are considered incompatible characteristics for underwater microrobots. Nevertheless, we have designed several novel types of bio-inspired locomotion, using ionic polymer metal composite (IPMC) and shape memory alloy (SMA) actuators. We reviewed a number of previously developed underwater microrobot prototypes that were constructed to demonstrate the feasibility of these types of biomimetic locomotion. Based on these prototypes, we summarized the implemented techniques and available results for efficient and precise underwater locomotion. In order to combine compact structure, multi-functionality, flexibility and precise positioning, we constructed a prototype of a new lobster-like microrobot and carried out a series of experiments to evaluate its walking, rotating, floating and grasping motions. Diving/surfacing experiments were performed by electrolyzing the water around the surfaces of the actuators. Three proximity sensors were installed on the microrobot to detect an object or avoid an obstacle while walking.

Original languageEnglish
Title of host publicationSoft Actuators
Subtitle of host publicationMaterials, Modeling, Applications, and Future Perspectives
PublisherSpringer Japan
Pages401-421
Number of pages21
Volume9784431547679
ISBN (Electronic)9784431547679
ISBN (Print)4431547665, 9784431547662
DOIs
Publication statusPublished - 1 Jul 2014

Keywords

  • Bio-inspired locomotion
  • Bio-inspired underwater microrobot
  • Biomedical robot
  • Biometrics
  • IPMC (Ionic Polymer Metal Composite) actuator

Fingerprint

Dive into the research topics of 'IPMC actuator-based multifunctional underwater microrobots'. Together they form a unique fingerprint.

Cite this

Guo, S., & Shi, L. (2014). IPMC actuator-based multifunctional underwater microrobots. In Soft Actuators: Materials, Modeling, Applications, and Future Perspectives (Vol. 9784431547679, pp. 401-421). Springer Japan. https://doi.org/10.1007/978-4-431-54767-9_29