Information Fusion of Topological Structure and Node Features in Graph Neural Network

Hongwei Zhang, Can Wang, Yuanqing Xia*, Tijin Yan

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Citation (Scopus)

Abstract

Graph neural networks(GNNs) have shown great popularity and achieved promising performance on various graph-based tasks in the past years. However, there is little work that explores the information fusion mechanism, which plays an import role in GNNs. Besides, datasets in the real world often have noises, which make the information fusion difficult. In this paper, we give an information-theoretic explanation. Specifically, we focus on how the information from topological structures and node features fuses and how different information contributes to the downstream task. Furthermore, we propose a general framework named M-GCN to express the fusion process in GNNs. Graph embeddings and feature graph are introduced to extract the information from topological structure and node features separately in M-GCN. Extensive experiments are conducted on several benchmark datasets and experimental results show that our proposed models are more robust and outperform state-of-the-art methods.

Original languageEnglish
Title of host publicationProceedings of the 40th Chinese Control Conference, CCC 2021
EditorsChen Peng, Jian Sun
PublisherIEEE Computer Society
Pages8204-8209
Number of pages6
ISBN (Electronic)9789881563804
DOIs
Publication statusPublished - 26 Jul 2021
Event40th Chinese Control Conference, CCC 2021 - Shanghai, China
Duration: 26 Jul 202128 Jul 2021

Publication series

NameChinese Control Conference, CCC
Volume2021-July
ISSN (Print)1934-1768
ISSN (Electronic)2161-2927

Conference

Conference40th Chinese Control Conference, CCC 2021
Country/TerritoryChina
CityShanghai
Period26/07/2128/07/21

Keywords

  • Graph Neural Network
  • Graph embedding
  • Information Fusion

Fingerprint

Dive into the research topics of 'Information Fusion of Topological Structure and Node Features in Graph Neural Network'. Together they form a unique fingerprint.

Cite this