Impulsive switching signals with functional inequalities: Stability analysis using hybrid systems framework

Shenyu Liu*, Aneel Tanwani

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

In this work, we introduce a class of impulsive switching signals described via functional inequalities which govern the switching among different modes with state resets. By choosing the parameters of the inequalities appropriately, we can recover several known classes of switching signals and also allow for signals that depend on time, mode or state of the system. Signals from this class can also be generated online via the use of an auxiliary timer while the dynamical system is running. Via a multiple Lyapunov functions approach, we provide sufficient conditions on the functional parameters of the switching signal which ensure that the equilibrium is globally asymptotically stable (GAS) for autonomous impulsive switched system. In case of inputs, similar methodology is used to provide sufficient conditions for input-to-state stability (ISS) and integral-input-to-state stability (iISS) uniformly over the proposed class of impulsive switching signals. As case studies, we consider switched systems which do not satisfy ISS (respectively, iISS) property for switching signals with arbitrarily large dwell-times but they are shown to be ISS (resp. iISS) for our proposed class of impulsive switchings signals described via functional inequalities.

Original languageEnglish
Article number111928
JournalAutomatica
Volume171
DOIs
Publication statusPublished - Jan 2025

Keywords

  • Global asymptotic stability
  • Hybrid systems
  • Impulsive switched systems
  • Input-to-state stability

Fingerprint

Dive into the research topics of 'Impulsive switching signals with functional inequalities: Stability analysis using hybrid systems framework'. Together they form a unique fingerprint.

Cite this