TY - JOUR
T1 - HZSM-5/MCM-41 composite molecular sieves for the catalytic cracking of endothermic hydrocarbon fuels
T2 - nano-ZSM-5 zeolites as the source
AU - Sang, Yu
AU - Jiao, Qingze
AU - Li, Hansheng
AU - Wu, Qin
AU - Zhao, Yun
AU - Sun, Kening
N1 - Publisher Copyright:
© 2014, Springer Science+Business Media Dordrecht.
PY - 2014/12
Y1 - 2014/12
N2 - A series of HZSM-5/MCM-41 composite molecular sieves (HZM-Ns (x)) were prepared by employing nano-ZSM-5 zeolites with the SiO2/Al2O3 ratios (x) of 50, 100 and 150 as the source. These materials were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive spectroscopy, transmission electron microscopy, N2 adsorption–desorption measurement, and NH3 temperature-programmed desorption. The catalytic cracking of endothermic hydrocarbon fuels over the HZM-Ns with n-decane as model was evaluated at atmospheric pressure and 500 °C. The effect of the parent zeolite, mesopore and SiO2/Al2O3 ratio on the structure, acidity, and catalytic performance of HZM-Ns was investigated. The HZM-Ns exhibited a skeletal matrix with nano-sized HZSM-5 particles (200–300 nm) with a controllable acidity well dispersed in and microporous–mesoporous hierarchical pores. The mesoporous structure improved the diffusion of the reactants and products in the pores, and the HZSM-5 nanoparticles uniformly dispersed in the MCM-41 matrix supplied a proper acidity, shorter channels, and a higher specific surface area for reaction. These resulted in a high catalytic activity, a high selectivity to light olefins and a long lifetime for n-decane catalytic cracking. The HZM-N (150) exhibited the excellent conversion, a high selectivity to light olefins and a long lifetime due to low diffusion resistance, high specific surface area, and appropriate acid distribution and strength, with the increasing SiO2/Al2O3 ratio.
AB - A series of HZSM-5/MCM-41 composite molecular sieves (HZM-Ns (x)) were prepared by employing nano-ZSM-5 zeolites with the SiO2/Al2O3 ratios (x) of 50, 100 and 150 as the source. These materials were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive spectroscopy, transmission electron microscopy, N2 adsorption–desorption measurement, and NH3 temperature-programmed desorption. The catalytic cracking of endothermic hydrocarbon fuels over the HZM-Ns with n-decane as model was evaluated at atmospheric pressure and 500 °C. The effect of the parent zeolite, mesopore and SiO2/Al2O3 ratio on the structure, acidity, and catalytic performance of HZM-Ns was investigated. The HZM-Ns exhibited a skeletal matrix with nano-sized HZSM-5 particles (200–300 nm) with a controllable acidity well dispersed in and microporous–mesoporous hierarchical pores. The mesoporous structure improved the diffusion of the reactants and products in the pores, and the HZSM-5 nanoparticles uniformly dispersed in the MCM-41 matrix supplied a proper acidity, shorter channels, and a higher specific surface area for reaction. These resulted in a high catalytic activity, a high selectivity to light olefins and a long lifetime for n-decane catalytic cracking. The HZM-N (150) exhibited the excellent conversion, a high selectivity to light olefins and a long lifetime due to low diffusion resistance, high specific surface area, and appropriate acid distribution and strength, with the increasing SiO2/Al2O3 ratio.
KW - Catalytic cracking
KW - Composite molecular sieves
KW - Endothermic hydrocarbon fuels
KW - Hierarchical pores
KW - Nano-ZSM-5
UR - http://www.scopus.com/inward/record.url?scp=84911931175&partnerID=8YFLogxK
U2 - 10.1007/s11051-014-2755-x
DO - 10.1007/s11051-014-2755-x
M3 - Article
AN - SCOPUS:84911931175
SN - 1388-0764
VL - 16
JO - Journal of Nanoparticle Research
JF - Journal of Nanoparticle Research
IS - 12
M1 - 2755
ER -