Hybrid graphene/cadmium-free ZnSe/ZnS quantum dots phototransistors for UV detection

Yi Lin Sun, Dan Xie*, Meng Xing Sun, Chang Jiu Teng, Liu Qian, Ruo Song Chen, Lan Xiang, Tian Ling Ren

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

24 Citations (Scopus)

Abstract

Graphene-based optoelectronic devices have attracted much attention due to their broadband photon responsivity and fast response time. However, the performance of such graphene-based photodetectors is greatly limited by weak light absorption and low responsivity induced by the gapless nature of graphene. Here, we achieved a high responsivity above 103 AW-1 for Ultraviolet (UV) light in a hybrid structure based phototransistor, which consists of CVD-grown monolayer graphene and ZnSe/ZnS core/shell quantum dots. The photodetectors exhibit a selective photo responsivity for the UV light with the wavelength of 405 nm, confirming the main light absorption from QDs. The photo-generated charges have been found to transfer from QDs to graphene channel, leading to a gate-tunable photo responsivity with the maximum value obtained at V G about 15V. A recirculate 100 times behavior with a good stability of 21 days is demonstrated for our devices and another flexible graphene/QDs based photoconductors have been found to be functional after 1000 bending cycles. Such UV photodetectors based on graphene decorated with cadmium-free ZnSe/ZnS quantum dots offer a new way to build environmental friendly optoelectronics.

Original languageEnglish
Article number5107
JournalScientific Reports
Volume8
Issue number1
DOIs
Publication statusPublished - 1 Dec 2018
Externally publishedYes

Fingerprint

Dive into the research topics of 'Hybrid graphene/cadmium-free ZnSe/ZnS quantum dots phototransistors for UV detection'. Together they form a unique fingerprint.

Cite this