HSTR: Hierarchical Scene Transformer for Multi-agent Trajectory Prediction

Shuaiqi Fu, Yixuan Yang, Xiaoyang Luo, Changhao Chen, Yanan Zhao*, Huachun Tan*

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Trajectory prediction plays a pivotal role in the autonomous driving systems. Existing methods generally employ agent-centric or scene-centric approaches to represent driving scenarios. However, these methods introduce significant redundant computations or pose losses, resulting in suboptimal prediction efficiency and accuracy. To tackle these problems, a novel multi-target trajectory prediction model, named Hierarchical Scene TRansformer (HSTR), is introduced. The driving scene is decomposed into two independent components by HSTR: global and local. In the global part, global interaction information is established and shared among all predicted agents, thereby reducing redundant computations. In the local part, an individual reference frame is established for each vehicle to eliminate the impact of pose variations and extract temporal features. Moreover, an adaptive anchor point generation method is proposed to address the challenge of capturing future modalities for vehicles. This method dynamically generates corresponding anchor points based on different driving scenarios to guide the prediction of trajectories across various modalities. The model performance is verified on the argoverse1 and argoverse2 datasets, and the experimental results demonstrate that competitive performance is achieved by HSTR in terms of efficiency and precision compared to the state-of-the-art methods.

Original languageEnglish
Title of host publication35th IEEE Intelligent Vehicles Symposium, IV 2024
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages773-779
Number of pages7
ISBN (Electronic)9798350348811
DOIs
Publication statusPublished - 2024
Event35th IEEE Intelligent Vehicles Symposium, IV 2024 - Jeju Island, Korea, Republic of
Duration: 2 Jun 20245 Jun 2024

Publication series

NameIEEE Intelligent Vehicles Symposium, Proceedings
ISSN (Print)1931-0587
ISSN (Electronic)2642-7214

Conference

Conference35th IEEE Intelligent Vehicles Symposium, IV 2024
Country/TerritoryKorea, Republic of
CityJeju Island
Period2/06/245/06/24

Fingerprint

Dive into the research topics of 'HSTR: Hierarchical Scene Transformer for Multi-agent Trajectory Prediction'. Together they form a unique fingerprint.

Cite this