Helping Language Models Learn More: Multi-Dimensional Task Prompt for Few-shot Tuning

Jinta Weng, Jiarui Zhang, Yue Hu*, Daidong Fa, Xiaofeng Xu, Heyan Huang

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Large language models (LLMs) can be used as accessible and intelligent chatbots by constructing natural language queries and directly inputting the prompt into the large language model. However, different prompt' constructions often lead to uncertainty in the answers and thus make it hard to utilize the specific knowledge of LLMs (like ChatGPT). To alleviate this, we use an interpretable structure to explain the prompt learning principle in LLMs, which certificates that the effectiveness of language models is determined by position changes of the task's related tokens. Therefore, we propose MTPrompt, a multi-dimensional task prompt learning method consisting based on task-related object, summary, and task description information. By automatically building and searching for appropriate prompts, our proposed MTPrompt achieves the best results on few-shot samples setting and five different datasets. In addition, we demonstrate the effectiveness and stability of our method in different experimental settings and ablation experiments. In interaction with large language models, embedding more task-related information into prompts will make it easier to stimulate knowledge embedded in large language models.

Original languageEnglish
Title of host publication2023 IEEE International Conference on Systems, Man, and Cybernetics
Subtitle of host publicationImproving the Quality of Life, SMC 2023 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages746-752
Number of pages7
ISBN (Electronic)9798350337020
DOIs
Publication statusPublished - 2023
Event2023 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2023 - Hybrid, Honolulu, United States
Duration: 1 Oct 20234 Oct 2023

Publication series

NameConference Proceedings - IEEE International Conference on Systems, Man and Cybernetics
ISSN (Print)1062-922X

Conference

Conference2023 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2023
Country/TerritoryUnited States
CityHybrid, Honolulu
Period1/10/234/10/23

Fingerprint

Dive into the research topics of 'Helping Language Models Learn More: Multi-Dimensional Task Prompt for Few-shot Tuning'. Together they form a unique fingerprint.

Cite this