TY - GEN
T1 - Heart Sound Classification based on Residual Shrinkage Networks
AU - Zhu, Lixian
AU - Qian, Kun
AU - Wang, Zhihua
AU - Hu, Bin
AU - Yamamoto, Yoshiharu
AU - Schuller, Björn W.
N1 - Publisher Copyright:
© 2022 IEEE.
PY - 2022
Y1 - 2022
N2 - Heart sound classification is one of the non-invasive methods for early detection of the cardiovascular diseases (CVDs), the leading cause for deaths. In recent years, Computer Audition (CA) technology has become increasingly sophisticated, auxiliary diagnosis technology of heart disease based on CA has become a popular research area. This paper proposes a deep Convolutional Neural Network (CNN) model for heart sound classification. To improve the classification accuracy of heart sound, we design a classification algorithm combining classical Residual Network (ResNet) and Long Short-Term Memory (LSTM). The model performance is evaluated in the PhysioNet/CinC Challenges 2016 datasets using a 2D time-frequency feature. We extract the four features from different filter-bank coefficients, including Filterbank (Fbank), Mel-Frequency Spectral Coefficients (MFSCs), and Mel-Frequency Cepstral Coefficients (MFCCs). The experimental results show the MFSCs feature outperforms the other features in the proposed CNN model. The proposed model performs well on the test set, particularly the F1 score of 84.3 % - the accuracy of 84.4 %, the sensitivity of 84.3 %, and the specificity of 85.6 %. Compared with the classical ResNet model, an accuracy of 4.9 % improvement is observed in the proposed model.
AB - Heart sound classification is one of the non-invasive methods for early detection of the cardiovascular diseases (CVDs), the leading cause for deaths. In recent years, Computer Audition (CA) technology has become increasingly sophisticated, auxiliary diagnosis technology of heart disease based on CA has become a popular research area. This paper proposes a deep Convolutional Neural Network (CNN) model for heart sound classification. To improve the classification accuracy of heart sound, we design a classification algorithm combining classical Residual Network (ResNet) and Long Short-Term Memory (LSTM). The model performance is evaluated in the PhysioNet/CinC Challenges 2016 datasets using a 2D time-frequency feature. We extract the four features from different filter-bank coefficients, including Filterbank (Fbank), Mel-Frequency Spectral Coefficients (MFSCs), and Mel-Frequency Cepstral Coefficients (MFCCs). The experimental results show the MFSCs feature outperforms the other features in the proposed CNN model. The proposed model performs well on the test set, particularly the F1 score of 84.3 % - the accuracy of 84.4 %, the sensitivity of 84.3 %, and the specificity of 85.6 %. Compared with the classical ResNet model, an accuracy of 4.9 % improvement is observed in the proposed model.
UR - http://www.scopus.com/inward/record.url?scp=85138127660&partnerID=8YFLogxK
U2 - 10.1109/EMBC48229.2022.9871640
DO - 10.1109/EMBC48229.2022.9871640
M3 - Conference contribution
C2 - 36085633
AN - SCOPUS:85138127660
T3 - Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
SP - 4469
EP - 4472
BT - 44th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2022
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 44th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2022
Y2 - 11 July 2022 through 15 July 2022
ER -