Heart Sound Classification based on Residual Shrinkage Networks

Lixian Zhu, Kun Qian*, Zhihua Wang, Bin Hu*, Yoshiharu Yamamoto, Björn W. Schuller

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

8 Citations (Scopus)

Abstract

Heart sound classification is one of the non-invasive methods for early detection of the cardiovascular diseases (CVDs), the leading cause for deaths. In recent years, Computer Audition (CA) technology has become increasingly sophisticated, auxiliary diagnosis technology of heart disease based on CA has become a popular research area. This paper proposes a deep Convolutional Neural Network (CNN) model for heart sound classification. To improve the classification accuracy of heart sound, we design a classification algorithm combining classical Residual Network (ResNet) and Long Short-Term Memory (LSTM). The model performance is evaluated in the PhysioNet/CinC Challenges 2016 datasets using a 2D time-frequency feature. We extract the four features from different filter-bank coefficients, including Filterbank (Fbank), Mel-Frequency Spectral Coefficients (MFSCs), and Mel-Frequency Cepstral Coefficients (MFCCs). The experimental results show the MFSCs feature outperforms the other features in the proposed CNN model. The proposed model performs well on the test set, particularly the F1 score of 84.3 % - the accuracy of 84.4 %, the sensitivity of 84.3 %, and the specificity of 85.6 %. Compared with the classical ResNet model, an accuracy of 4.9 % improvement is observed in the proposed model.

Original languageEnglish
Title of host publication44th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2022
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages4469-4472
Number of pages4
ISBN (Electronic)9781728127828
DOIs
Publication statusPublished - 2022
Event44th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2022 - Glasgow, United Kingdom
Duration: 11 Jul 202215 Jul 2022

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
Volume2022-July
ISSN (Print)1557-170X

Conference

Conference44th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2022
Country/TerritoryUnited Kingdom
CityGlasgow
Period11/07/2215/07/22

Fingerprint

Dive into the research topics of 'Heart Sound Classification based on Residual Shrinkage Networks'. Together they form a unique fingerprint.

Cite this