Hazardous Gases-Responsive Photonic Crystals Cryogenic Sensors Based on Antifreezing and Water Retention Hydrogels

Jiang Zhao, Xiaolu Cai, Xiaojing Zhang, Jiaojiao Zhang, Jing Fan, Feng Ma, Wei Zhu, Xiyu Jia*, Shushan Wang, Zihui Meng*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

13 Citations (Scopus)

Abstract

Nowadays, the sensing of hazardous gases is urgent for the consideration of public safety and human health, especially in extreme conditions of low temperatures. In this study, a photonic crystals (PhCs) sensor with water retention and antifreezing properties was developed and applied to visual hazardous gases sensing at low temperature, passively. The sensor was prepared by dip-coating with poly(methyl methacrylate) (PMMA) colloidal microspheres followed by embedding in k-carrageenan/polyacrylamide-ethylene glycol (k-CA/PAM-EG) hydrogel. The sensor responded to hazardous gases, including ammonia, toluene, xylene, acetone, methanol, ethanol, and 1-propanol, with a change in the reflection wavelength and visible structural color. At room temperature, the reflection wavelength of the sensor blue-shifted 49 nm in ammonia, and the structural color changed from red to yellow. For low temperatures, the sensor showed great water retention and antifreezing properties even at −57 °C due to the double network. The sensor still had a great response to hazardous gases after freezing at −20 °C for 12 h and testing at 0 °C, and the obtained results were similar to those at room temperature. Based on this excellent stability and visual sensing at low temperature, the sensor demonstrates the potential for detection of hazardous vapors in extreme environments.

Original languageEnglish
Pages (from-to)42046-42055
Number of pages10
JournalACS Applied Materials and Interfaces
Volume15
Issue number35
DOIs
Publication statusPublished - 6 Sept 2023

Keywords

  • antifreezing
  • hazardous vapors
  • photonic crystals
  • visual detection
  • water retention

Fingerprint

Dive into the research topics of 'Hazardous Gases-Responsive Photonic Crystals Cryogenic Sensors Based on Antifreezing and Water Retention Hydrogels'. Together they form a unique fingerprint.

Cite this