TY - JOUR
T1 - Guided Hyperspectral Image Denoising with Realistic Data
AU - Zhang, Tao
AU - Fu, Ying
AU - Zhang, Jun
N1 - Publisher Copyright:
© 2022, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
PY - 2022/11
Y1 - 2022/11
N2 - The hyperspectral image (HSI) denoising has been widely utilized to improve HSI qualities. Recently, learning-based HSI denoising methods have shown their effectiveness, but most of them are based on synthetic dataset and lack the generalization capability on real testing HSI. Moreover, there is still no public paired real HSI denoising dataset to learn HSI denoising network and quantitatively evaluate HSI methods. In this paper, we mainly focus on how to produce realistic dataset for learning and evaluating HSI denoising network. On the one hand, we collect a paired real HSI denoising dataset, which consists of short-exposure noisy HSIs and the corresponding long-exposure clean HSIs. On the other hand, we propose an accurate HSI noise model which matches the distribution of real data well and can be employed to synthesize realistic dataset. On the basis of the noise model, we present an approach to calibrate the noise parameters of the given hyperspectral camera. Besides, on the basis of observation of high signal-to-noise ratio of mean image of all spectral bands, we propose a guided HSI denoising network with guided dynamic nonlocal attention, which calculates dynamic nonlocal correlation on the guidance information, i.e., mean image of spectral bands, and adaptively aggregates spatial nonlocal features for all spectral bands. The extensive experimental results show that a network learned with only synthetic data generated by our noise model performs as well as it is learned with paired real data, and our guided HSI denoising network outperforms state-of-the-art methods under both quantitative metrics and visual quality.
AB - The hyperspectral image (HSI) denoising has been widely utilized to improve HSI qualities. Recently, learning-based HSI denoising methods have shown their effectiveness, but most of them are based on synthetic dataset and lack the generalization capability on real testing HSI. Moreover, there is still no public paired real HSI denoising dataset to learn HSI denoising network and quantitatively evaluate HSI methods. In this paper, we mainly focus on how to produce realistic dataset for learning and evaluating HSI denoising network. On the one hand, we collect a paired real HSI denoising dataset, which consists of short-exposure noisy HSIs and the corresponding long-exposure clean HSIs. On the other hand, we propose an accurate HSI noise model which matches the distribution of real data well and can be employed to synthesize realistic dataset. On the basis of the noise model, we present an approach to calibrate the noise parameters of the given hyperspectral camera. Besides, on the basis of observation of high signal-to-noise ratio of mean image of all spectral bands, we propose a guided HSI denoising network with guided dynamic nonlocal attention, which calculates dynamic nonlocal correlation on the guidance information, i.e., mean image of spectral bands, and adaptively aggregates spatial nonlocal features for all spectral bands. The extensive experimental results show that a network learned with only synthetic data generated by our noise model performs as well as it is learned with paired real data, and our guided HSI denoising network outperforms state-of-the-art methods under both quantitative metrics and visual quality.
KW - Guided nonlocal denoising network
KW - Hyperspectral image denoising
KW - Paired real dataset
KW - Realistic synthetic data
UR - http://www.scopus.com/inward/record.url?scp=85138040918&partnerID=8YFLogxK
U2 - 10.1007/s11263-022-01660-2
DO - 10.1007/s11263-022-01660-2
M3 - Article
AN - SCOPUS:85138040918
SN - 0920-5691
VL - 130
SP - 2885
EP - 2901
JO - International Journal of Computer Vision
JF - International Journal of Computer Vision
IS - 11
ER -