Graph Convolution-Based Deep Reinforcement Learning for Multi-Agent Decision-Making in Interactive Traffic Scenarios

Qi Liu, Zirui Li, Xueyuan Li*, Jingda Wu, Shihua Yuan

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

7 Citations (Scopus)

Abstract

A reliable multi-agent decision-making system is highly demanded for safe and efficient operations of connected and autonomous vehicles (CAVs). In order to represent the mutual effects between vehicles and model the dynamic traffic environments, this research proposes an integrated and open-source framework to realize different Graph Reinforcement Learning (GRL) methods for better decision-making in interactive driving scenarios. Firstly, an interactive driving scenario on the highway with two ramps is constructed. The vehicles in this scenario are modeled by graph representation, and features are extracted via Graph Neural Network (GNN). Secondly, several GRL approaches are implemented and compared in detail. Finally, The simulation in the SUMO platform is carried out to evaluate the performance of different G RL approaches. Results are analyzed from multiple perspectives to compare the performance of different G RL methods in intelligent transportation scenarios. Experiments show that the implementation of GNN can well model the interactions between vehicles, and the proposed framework can improve the overall performance of multi-agent decision-making. The source code of our work can be found at https://github.com/Jacklinkk/TorchGRL.

Original languageEnglish
Title of host publication2022 IEEE 25th International Conference on Intelligent Transportation Systems, ITSC 2022
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages4074-4081
Number of pages8
ISBN (Electronic)9781665468800
DOIs
Publication statusPublished - 2022
Event25th IEEE International Conference on Intelligent Transportation Systems, ITSC 2022 - Macau, China
Duration: 8 Oct 202212 Oct 2022

Publication series

NameIEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC
Volume2022-October

Conference

Conference25th IEEE International Conference on Intelligent Transportation Systems, ITSC 2022
Country/TerritoryChina
CityMacau
Period8/10/2212/10/22

Fingerprint

Dive into the research topics of 'Graph Convolution-Based Deep Reinforcement Learning for Multi-Agent Decision-Making in Interactive Traffic Scenarios'. Together they form a unique fingerprint.

Cite this