Generation and elimination of polarization-dependent ablation of cubic crystals by femtosecond laser radiation

Xin Li, Wenlong Rong, Lan Jiang, Kaihu Zhang, Cong Li, Qiang Cao, Guangming Zhang, Yongfeng Lu

Research output: Contribution to journalArticlepeer-review

20 Citations (Scopus)

Abstract

We experimentally showed that the π/2-period oscillation of an ablation area with laser polarization direction can be observed in GaAs, ZnSe, MgO and LiF with cubic crystal by a femtosecond laser (800 nm, 100 fs) and that the modulation in the ablation area can be controlled by the laser fluence. While the polarization dependence is sustained in a wide range of laser fluences for a narrow band-gap crystal, it is strongly suppressed with a slight augmentation of laser fluence in a wide band-gap material. The polarization-dependent ablation is explained by the crystal's orientation-dependent reduced-electron mass and the resultant contrasting nonlinear absorptions with slightly different reduced electron mass. The interplay between photoionization and avalanche ionization is discussed to interpret the influence of laser fluence on polarization-dependent ablation. Based on Keldysh's theory, polarization-dependent ablation occurs in a mixed regime between tunneling and multiphoton ionization.

Original languageEnglish
Pages (from-to)30170-30176
Number of pages7
JournalOptics Express
Volume22
Issue number24
DOIs
Publication statusPublished - 1 Dec 2014

Fingerprint

Dive into the research topics of 'Generation and elimination of polarization-dependent ablation of cubic crystals by femtosecond laser radiation'. Together they form a unique fingerprint.

Cite this