TY - GEN
T1 - Generalizable Face Landmarking Guided by Conditional Face Warping
AU - Liang, Jiayi
AU - Liu, Haotian
AU - Xu, Hongteng
AU - Luo, Dixin
N1 - Publisher Copyright:
© 2024 IEEE.
PY - 2024
Y1 - 2024
N2 - As a significant step for human face modeling, editing, and generation, face landmarking aims at extracting facial keypoints from images. A generalizable face landmarker is required in practice because real-world facial images, e.g., the avatars in animations and games, are often stylized in various ways. However, achieving generalizable face land-marking is challenging due to the diversity of facial styles and the scarcity of labeled stylized faces. In this study, we propose a simple but effective paradigm to learn a generalizable face landmarker based on labeled real human faces and unlabeled stylized faces. Our method learns the face landmarker as the key module of a conditional face warper. Given a pair of real and stylized facial images, the conditional face warper predicts a warping field from the real face to the stylized one, in which the face landmarker predicts the ending points of the warping field and provides us with high-quality pseudo landmarks for the corresponding stylized facial images. Applying an alternating optimization strategy, we learn the face landmarker to minimize i) the discrepancy between the stylized faces and the warped real ones and ii) the prediction errors of both real and pseudo landmarks. Experiments on various datasets show that our method outperforms existing state-of-the-art domain adaptation methods in face landmarking tasks, leading to a face landmarker with better generalizability. Code is available at https://plustwo0.github.io/project-face-landmarker.
AB - As a significant step for human face modeling, editing, and generation, face landmarking aims at extracting facial keypoints from images. A generalizable face landmarker is required in practice because real-world facial images, e.g., the avatars in animations and games, are often stylized in various ways. However, achieving generalizable face land-marking is challenging due to the diversity of facial styles and the scarcity of labeled stylized faces. In this study, we propose a simple but effective paradigm to learn a generalizable face landmarker based on labeled real human faces and unlabeled stylized faces. Our method learns the face landmarker as the key module of a conditional face warper. Given a pair of real and stylized facial images, the conditional face warper predicts a warping field from the real face to the stylized one, in which the face landmarker predicts the ending points of the warping field and provides us with high-quality pseudo landmarks for the corresponding stylized facial images. Applying an alternating optimization strategy, we learn the face landmarker to minimize i) the discrepancy between the stylized faces and the warped real ones and ii) the prediction errors of both real and pseudo landmarks. Experiments on various datasets show that our method outperforms existing state-of-the-art domain adaptation methods in face landmarking tasks, leading to a face landmarker with better generalizability. Code is available at https://plustwo0.github.io/project-face-landmarker.
KW - domain adaptation
KW - landmark detection
UR - http://www.scopus.com/inward/record.url?scp=85199981480&partnerID=8YFLogxK
U2 - 10.1109/CVPR52733.2024.00235
DO - 10.1109/CVPR52733.2024.00235
M3 - Conference contribution
AN - SCOPUS:85199981480
T3 - Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
SP - 2425
EP - 2435
BT - Proceedings - 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024
PB - IEEE Computer Society
T2 - 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024
Y2 - 16 June 2024 through 22 June 2024
ER -