Fusion estimation for nonlinear systems with heavy-tailed noises

Chenying Di, Liping Yan*, Yuanqing Xia

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Citation (Scopus)

Abstract

In some target tracking scenarios, the process noise and the measurement noise are both heavy-tailed noises. This type of noise can not be modeled as Gaussian noise, since it has quite different characteristics. Existing algorithms for fusion estimation of nonlinear systems with Gaussian noises are no longer applicable for systems with heavy-tailed noises. In this paper, estimation of multisensor data fusion for nonlinear systems with heavy-tailed process noise and measurement noise in target tracking is studied. Based on the robust Student's t based nonlinear filter (RSTNF), a filtering method using unscented transformation (UT) for state estimation of nonlinear systems with heavy-tailed noises, we present a modified nonlinear filter in case of package drop out exists. For fusion estimation of multisensor nonlinear systems, we present the centralized fusion based on the modified filter. Our results from Monte Carlo simulations on a target tracking example demonstrate the effectiveness and the robustness of the presented algorithm.

Original languageEnglish
Title of host publicationProceedings of the 38th Chinese Control Conference, CCC 2019
EditorsMinyue Fu, Jian Sun
PublisherIEEE Computer Society
Pages3537-3542
Number of pages6
ISBN (Electronic)9789881563972
DOIs
Publication statusPublished - Jul 2019
Event38th Chinese Control Conference, CCC 2019 - Guangzhou, China
Duration: 27 Jul 201930 Jul 2019

Publication series

NameChinese Control Conference, CCC
Volume2019-July
ISSN (Print)1934-1768
ISSN (Electronic)2161-2927

Conference

Conference38th Chinese Control Conference, CCC 2019
Country/TerritoryChina
CityGuangzhou
Period27/07/1930/07/19

Keywords

  • Fusion estimation
  • Heavy-tailed noises
  • Nonlinear systems
  • Package drop out
  • Student's t distribution

Fingerprint

Dive into the research topics of 'Fusion estimation for nonlinear systems with heavy-tailed noises'. Together they form a unique fingerprint.

Cite this