TY - GEN
T1 - Forecasting collector road speeds under high percentage of missing data
AU - Xin, Xin
AU - Lu, Chunwei
AU - Wang, Yashen
AU - Huang, Heyan
N1 - Publisher Copyright:
© Copyright 2015, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2015/6/1
Y1 - 2015/6/1
N2 - Accurate road speed predictions can help drivers in smart route planning. Although the issue has been studied previously, most existing work focus on arterial roads only, where sensors are configured closely for collecting complete real-time data. For collector roads where sensors sparsely cover, however, speed predictions are often ignored. With GPS-equipped floating car signals being available nowadays, we aim at forecasting collector road speeds by utilizing these signals. The main challenge compared with arterial roads comes from the missing data. In a time slot of the real case, over 90% of collector roads cannot be covered by enough floating cars. Thus most traditional approaches for arterial roads, relying on complete historical data, cannot be employed directly. Aiming at solving this problem, we propose a multi-view road speed prediction framework. In the first view, temporal patterns are modeled by a layered hidden Markov model; and in the second view, spatial patterns are modeled by a collective matrix factorization model. The two models are learned and inferred simultaneously in a co-regularized manner. Experiments conducted in the Beijing road network, based on I OK taxi signals in 2 years, have demonstrated that the approach outperforms traditional approaches by 10% in MAE and RMSE.
AB - Accurate road speed predictions can help drivers in smart route planning. Although the issue has been studied previously, most existing work focus on arterial roads only, where sensors are configured closely for collecting complete real-time data. For collector roads where sensors sparsely cover, however, speed predictions are often ignored. With GPS-equipped floating car signals being available nowadays, we aim at forecasting collector road speeds by utilizing these signals. The main challenge compared with arterial roads comes from the missing data. In a time slot of the real case, over 90% of collector roads cannot be covered by enough floating cars. Thus most traditional approaches for arterial roads, relying on complete historical data, cannot be employed directly. Aiming at solving this problem, we propose a multi-view road speed prediction framework. In the first view, temporal patterns are modeled by a layered hidden Markov model; and in the second view, spatial patterns are modeled by a collective matrix factorization model. The two models are learned and inferred simultaneously in a co-regularized manner. Experiments conducted in the Beijing road network, based on I OK taxi signals in 2 years, have demonstrated that the approach outperforms traditional approaches by 10% in MAE and RMSE.
UR - http://www.scopus.com/inward/record.url?scp=84959861388&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:84959861388
T3 - Proceedings of the National Conference on Artificial Intelligence
SP - 1917
EP - 1923
BT - Proceedings of the 29th AAAI Conference on Artificial Intelligence, AAAI 2015 and the 27th Innovative Applications of Artificial Intelligence Conference, IAAI 2015
PB - AI Access Foundation
T2 - 29th AAAI Conference on Artificial Intelligence, AAAI 2015 and the 27th Innovative Applications of Artificial Intelligence Conference, IAAI 2015
Y2 - 25 January 2015 through 30 January 2015
ER -