TY - GEN
T1 - FlyTracker
T2 - 42nd IEEE International Conference on Computer Communications, INFOCOM 2023
AU - Wu, Yue
AU - Xu, Jingao
AU - Li, Danyang
AU - Xie, Yadong
AU - Cao, Hao
AU - Li, Fan
AU - Yang, Zheng
N1 - Publisher Copyright:
© 2023 IEEE.
PY - 2023
Y1 - 2023
N2 - Location awareness in environments is one of the key parts for drones' applications and have been explored through various visual sensors. However, standard cameras easily suffer from motion blur under high moving speeds and low-quality image under poor illumination, which brings challenges for drones to perform motion tracking. Recently, a kind of bio-inspired sensors called event cameras emerge, offering advantages like high temporal resolution, high dynamic range and low latency, which motivate us to explore their potential to perform motion tracking in limited scenarios. In this paper, we propose FlyTracker, aiming at developing visual sensing ability for drones of both individual and circumambient location-relevant contextual, by using a monocular event camera. In FlyTracker, background-subtraction-based method is proposed to distinguish moving objects from background and fusion-based photometric features are carefully designed to obtain motion information. Through multilevel fusion of events and images, which are heterogeneous visual data, FlyTracker can effectively and reliably track the 6-DoF pose of the drone as well as monitor relative positions of moving obstacles. We evaluate performance of FlyTracker in different environments and the results show that FlyTracker is more accurate than the state-of-the-art baselines.
AB - Location awareness in environments is one of the key parts for drones' applications and have been explored through various visual sensors. However, standard cameras easily suffer from motion blur under high moving speeds and low-quality image under poor illumination, which brings challenges for drones to perform motion tracking. Recently, a kind of bio-inspired sensors called event cameras emerge, offering advantages like high temporal resolution, high dynamic range and low latency, which motivate us to explore their potential to perform motion tracking in limited scenarios. In this paper, we propose FlyTracker, aiming at developing visual sensing ability for drones of both individual and circumambient location-relevant contextual, by using a monocular event camera. In FlyTracker, background-subtraction-based method is proposed to distinguish moving objects from background and fusion-based photometric features are carefully designed to obtain motion information. Through multilevel fusion of events and images, which are heterogeneous visual data, FlyTracker can effectively and reliably track the 6-DoF pose of the drone as well as monitor relative positions of moving obstacles. We evaluate performance of FlyTracker in different environments and the results show that FlyTracker is more accurate than the state-of-the-art baselines.
UR - http://www.scopus.com/inward/record.url?scp=85171613181&partnerID=8YFLogxK
U2 - 10.1109/INFOCOM53939.2023.10228976
DO - 10.1109/INFOCOM53939.2023.10228976
M3 - Conference contribution
AN - SCOPUS:85171613181
T3 - Proceedings - IEEE INFOCOM
BT - INFOCOM 2023 - IEEE Conference on Computer Communications
PB - Institute of Electrical and Electronics Engineers Inc.
Y2 - 17 May 2023 through 20 May 2023
ER -