Fluorescence imaging of lysosomal hydrogen selenide under oxygen-controlled conditions

Yong Tian, Fangyun Xin, Jing Jing*, Xiaoling Zhang

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

18 Citations (Scopus)

Abstract

Hydrogen selenide (H2Se), a central metabolite of Se supplements, displays critical biological functions in many physiological and pathological processes. To better understand its comprehensive function, especially those exerted in subcellular organelles, the development of specific assays is urgently needed. However, the methodology to detect H2Se is poorly developed. Here, we present a concise design strategy to obtain an activatable fluorescent probe (Se-1) for H2Se by utilizing an intramolecular photoinduced electron transfer (PET) process to switch the fluorescence. The probe is able to selectively react with H2Se without interference from intracellular reactive species, and has been successfully used to image the H2Se content in lysosomes. Additionally, with the aid of Se-1, we demonstrated that lysosomal H2Se can be generated and can gradually accumulate in HepG2 cells under hypoxic conditions. These applications make Se-1 a potential new candidate for deciphering the biological effects of H2Se on lysosomes in biology and pathology.

Original languageEnglish
Pages (from-to)2829-2834
Number of pages6
JournalJournal of Materials Chemistry B
Volume7
Issue number17
DOIs
Publication statusPublished - 2019

Fingerprint

Dive into the research topics of 'Fluorescence imaging of lysosomal hydrogen selenide under oxygen-controlled conditions'. Together they form a unique fingerprint.

Cite this