Finite-time attitude control for rigid spacecraft based on adaptive super-twisting algorithm

Yuanqing Xia*, Jinhui Zhang, Kunfeng Lu, Ning Zhou

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingChapterpeer-review

2 Citations (Scopus)

Abstract

This chapter addresses the finite-time attitude tracking control for rigid spacecraft with external disturbances and inertia uncertainties. A novel adaptive-gain super-twist algorithm (STA) improves the control performance of standard STA, and the dynamically adapted control gains can resolve non-overestimating problem. The presented controllers do not require any knowledge on inertial uncertainties and external disturbances, and are anti-chattering and anti-singularity. The closed-loop spacecraft system under the proposed controllers can provide rapidity, robustness, accuracy, and anti-wasting energy simultaneously, which is largely ignored in the existing literatures. The finite-time rigorous convergence, an estimation of the convergence time and accurate expression of convergence region is also provided. Finally, comparison results demonstrate that the presented controllers can achieve higher control performance than existing methods. Furthermore, digital simulations utilizing the physical parameters of Uosat-12 verify the effectiveness of the proposed controllers.

Original languageEnglish
Title of host publicationAdvances in Industrial Control
PublisherSpringer International Publishing
Pages117-140
Number of pages24
DOIs
Publication statusPublished - 2019

Publication series

NameAdvances in Industrial Control
ISSN (Print)1430-9491
ISSN (Electronic)2193-1577

Keywords

  • Adaptive control
  • Finite-time attitude tracking control
  • Rigid spacecraft
  • Super-twist algorithm

Fingerprint

Dive into the research topics of 'Finite-time attitude control for rigid spacecraft based on adaptive super-twisting algorithm'. Together they form a unique fingerprint.

Cite this