TY - GEN
T1 - Few-shot human activity recognition on noisy wearable sensor data
AU - Deng, Shizhuo
AU - Hua, Wen
AU - Wang, Botao
AU - Wang, Guoren
AU - Zhou, Xiaofang
N1 - Publisher Copyright:
© Springer Nature Switzerland AG 2020.
PY - 2020
Y1 - 2020
N2 - Most existing wearable sensor-based human activity recognition (HAR) models are trained on substantial labeled data. It is difficult for HAR to learn new-class activities unseen during training from a few samples. Very few researches of few-shot learning (FSL) have been done in HAR to address the above problem, though FSL has been widely used in computer vision tasks. Besides, it is impractical to annotate sensor data with accurate activity labels in real-life applications. The noisy labels have great negative effects on FSL due to the limited samples. The weakly supervised few-shot learning in HAR is challenging, significant but rarely researched in existing literature. In this paper, we propose an end-to-end Weakly supervised Prototypical Networks (WPN) to learn more latent information from noisy data with multiple instance learning (MIL). In MIL, the noisy instances (subsequences of segmentation) have different labels from the bag’s (segmentation’s) label. The prototype is the center of the instances in WPN rather than less discriminative bags, which determines the bag-level classification accuracy. To get the most representative instance-level prototype, we propose two strategies to refine the prototype by selecting high-probability instances same as their bag’s label iteratively based on the distance-metric. The model is trained by minimizing the instance-level loss function and infers the final bag-level labels from instance-level labels. In the experiments, our proposals outperform existing approaches and achieve higher average ranks.
AB - Most existing wearable sensor-based human activity recognition (HAR) models are trained on substantial labeled data. It is difficult for HAR to learn new-class activities unseen during training from a few samples. Very few researches of few-shot learning (FSL) have been done in HAR to address the above problem, though FSL has been widely used in computer vision tasks. Besides, it is impractical to annotate sensor data with accurate activity labels in real-life applications. The noisy labels have great negative effects on FSL due to the limited samples. The weakly supervised few-shot learning in HAR is challenging, significant but rarely researched in existing literature. In this paper, we propose an end-to-end Weakly supervised Prototypical Networks (WPN) to learn more latent information from noisy data with multiple instance learning (MIL). In MIL, the noisy instances (subsequences of segmentation) have different labels from the bag’s (segmentation’s) label. The prototype is the center of the instances in WPN rather than less discriminative bags, which determines the bag-level classification accuracy. To get the most representative instance-level prototype, we propose two strategies to refine the prototype by selecting high-probability instances same as their bag’s label iteratively based on the distance-metric. The model is trained by minimizing the instance-level loss function and infers the final bag-level labels from instance-level labels. In the experiments, our proposals outperform existing approaches and achieve higher average ranks.
KW - Few-shot learning
KW - Human activity recognition
KW - Weakly supervised models
KW - Wearable sensors
UR - http://www.scopus.com/inward/record.url?scp=85092082980&partnerID=8YFLogxK
U2 - 10.1007/978-3-030-59416-9_4
DO - 10.1007/978-3-030-59416-9_4
M3 - Conference contribution
AN - SCOPUS:85092082980
SN - 9783030594152
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 54
EP - 72
BT - Database Systems for Advanced Applications - 25th International Conference, DASFAA 2020, Proceedings
A2 - Nah, Yunmook
A2 - Cui, Bin
A2 - Lee, Sang-Won
A2 - Yu, Jeffrey Xu
A2 - Moon, Yang-Sae
A2 - Whang, Steven Euijong
PB - Springer Science and Business Media Deutschland GmbH
T2 - 25th International Conference on Database Systems for Advanced Applications, DASFAA 2020
Y2 - 24 September 2020 through 27 September 2020
ER -