TY - GEN
T1 - Falling Prediction and Recovery Control for a Humanoid Robot
AU - Yang, Tianqi
AU - Zhang, Weimin
AU - Yu, Zhangguo
AU - Meng, Libo
AU - Fu, Chenglong
AU - Huang, Qiang
N1 - Publisher Copyright:
© 2018 IEEE.
PY - 2018/7/2
Y1 - 2018/7/2
N2 - It is very easy for biped robots to fall down. Some previous studies have been carried out to detect the fall state and protect the robot from damage. But it is not enough to detect a fall. It is very important for the biped robot to predict whether it will fall in the future based on the current state. In this paper, we consider a fall state predicted problem for bipedal robots. Based on the D 'Alembert principle, this method can predict the fall state at the moment the biped robot deviates from the normal state in every conditions such as standing and walking. It can give the robot more time to recover from the unstable state or protect itself from damage. And its stable control strategy matching the proposed method is also proposed to protect the robot from falling. The result is verified via simulations.
AB - It is very easy for biped robots to fall down. Some previous studies have been carried out to detect the fall state and protect the robot from damage. But it is not enough to detect a fall. It is very important for the biped robot to predict whether it will fall in the future based on the current state. In this paper, we consider a fall state predicted problem for bipedal robots. Based on the D 'Alembert principle, this method can predict the fall state at the moment the biped robot deviates from the normal state in every conditions such as standing and walking. It can give the robot more time to recover from the unstable state or protect itself from damage. And its stable control strategy matching the proposed method is also proposed to protect the robot from falling. The result is verified via simulations.
UR - http://www.scopus.com/inward/record.url?scp=85062298990&partnerID=8YFLogxK
U2 - 10.1109/HUMANOIDS.2018.8625000
DO - 10.1109/HUMANOIDS.2018.8625000
M3 - Conference contribution
AN - SCOPUS:85062298990
T3 - IEEE-RAS International Conference on Humanoid Robots
SP - 1073
EP - 1079
BT - 2018 IEEE-RAS 18th International Conference on Humanoid Robots, Humanoids 2018
PB - IEEE Computer Society
T2 - 18th IEEE-RAS International Conference on Humanoid Robots, Humanoids 2018
Y2 - 6 November 2018 through 9 November 2018
ER -