Fairness-aware Maximal Clique Enumeration

Minjia Pan, Rong Hua Li*, Qi Zhang, Yongheng Dai, Qun Tian, Guoren Wang

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

5 Citations (Scopus)

Abstract

Cohesive sub graph mining on attributed graphs is a fundamental problem in graph data analysis. Existing cohesive sub graph mining algorithms on attributed graphs do not consider the fairness of attributes in the subgraph. In this paper, we for the first time introduce fairness into the widely-used clique model to mine fairness-aware cohesive subgraphs. In particular, we propose two novel fairness-aware maximal clique models on attributed graphs, called weak fair clique and strong fair clique respectively. To enumerate all weak fair cliques, we develop an efficient backtracking algorithm called WFCEnum equipped with a novel colorful k-core based pruning technique. We also propose an efficient enumeration algorithm called SFCEnum to find all strong fair cliques based on a new attribute-alternatively-selection search technique. To further improve the efficiency, we also present several non-trivial ordering techniques for both weak and strong fair clique enumeration. The results of extensive experiments on four real-world graphs demonstrate the efficiency and effectiveness of the proposed algorithms.

Original languageEnglish
Title of host publicationProceedings - 2022 IEEE 38th International Conference on Data Engineering, ICDE 2022
PublisherIEEE Computer Society
Pages259-271
Number of pages13
ISBN (Electronic)9781665408837
DOIs
Publication statusPublished - 2022
Event38th IEEE International Conference on Data Engineering, ICDE 2022 - Virtual, Online, Malaysia
Duration: 9 May 202212 May 2022

Publication series

NameProceedings - International Conference on Data Engineering
Volume2022-May
ISSN (Print)1084-4627

Conference

Conference38th IEEE International Conference on Data Engineering, ICDE 2022
Country/TerritoryMalaysia
CityVirtual, Online
Period9/05/2212/05/22

Keywords

  • fairness
  • graph coloring
  • maximal clique

Fingerprint

Dive into the research topics of 'Fairness-aware Maximal Clique Enumeration'. Together they form a unique fingerprint.

Cite this