Exploring Explainable Selection to Control Abstractive Summarization

Haonan Wang, Yang Gao*, Yu Bai, Mirella Lapata, Heyan Huang

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

11 Citations (Scopus)

Abstract

Like humans, document summarization models can interpret a document's contents in a number of ways. Unfortunately, the neural models of today are largely black boxes that provide little explanation of how or why they generated a summary in the way they did. Therefore, to begin prying open the black box and to inject a level of control into the substance of the final summary, we developed a novel select-and-generate framework that focuses on explainability. By revealing the latent centrality and interactions between sentences, along with scores for sentence novelty and relevance, users are given a window into the choices a model is making and an opportunity to guide those choices in a more desirable direction. A novel pair-wise matrix captures the sentence interactions, centrality and attribute scores, and a mask with tunable attribute thresholds allows the user to control which sentences are likely to be included in the extraction. A sentence-deployed attention mechanism in the abstractor ensures the final summary emphasizes the desired content. Additionally, the encoder is adaptable, supporting both Transformer- and BERTbased configurations. In a series of experiments assessed with ROUGE metrics and two human evaluations, ESCA outperformed eight state-of-the-art models on the CNN/DailyMail and NYT50 benchmark datasets.

Original languageEnglish
Title of host publication35th AAAI Conference on Artificial Intelligence, AAAI 2021
PublisherAssociation for the Advancement of Artificial Intelligence
Pages13933-13941
Number of pages9
ISBN (Electronic)9781713835974
Publication statusPublished - 2021
Event35th AAAI Conference on Artificial Intelligence, AAAI 2021 - Virtual, Online
Duration: 2 Feb 20219 Feb 2021

Publication series

Name35th AAAI Conference on Artificial Intelligence, AAAI 2021
Volume15

Conference

Conference35th AAAI Conference on Artificial Intelligence, AAAI 2021
CityVirtual, Online
Period2/02/219/02/21

Fingerprint

Dive into the research topics of 'Exploring Explainable Selection to Control Abstractive Summarization'. Together they form a unique fingerprint.

Cite this