Equivariant Line Graph Neural Network for Protein-Ligand Binding Affinity Prediction

Yiqiang Yi, Xu Wan, Kangfei Zhao, Le Ou-Yang, Peilin Zhao

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)
Plum Print visual indicator of research metrics
  • Citations
    • Citation Indexes: 1
  • Captures
    • Readers: 7
  • Mentions
    • News Mentions: 1
see details

Abstract

Binding affinity prediction of three-dimensional (3D) protein-ligand complexes is critical for drug repositioning and virtual drug screening. Existing approaches usually transform a 3D protein-ligand complex to a two-dimensional (2D) graph, and then use graph neural networks (GNNs) to predict its binding affinity. However, the node and edge features of the 2D graph are extracted based on invariant local coordinate systems of the 3D complex. As a result, these approaches can not fully learn the global information of the complex, such as the physical symmetry and the topological information of bonds. To address these issues, we propose a novel Equivariant Line Graph Network (ELGN) for binding affinity prediction of 3D protein-ligand complexes. The proposed ELGN firstly adds a super node to the 3D complex, and then builds a line graph based on the 3D complex. After that, ELGN uses a new E(3)-equivariant network layer to pass the messages between nodes and edges based on the global coordinate system of the 3D complex. Experimental results on two real datasets demonstrate the effectiveness of ELGN over several state-of-the-art baselines.

Original languageEnglish
Pages (from-to)1-13
Number of pages13
JournalIEEE Journal of Biomedical and Health Informatics
DOIs
Publication statusAccepted/In press - 2024

Keywords

  • Drug discovery
  • Drugs
  • Equivariant
  • Graph neural network
  • Graph neural networks
  • Line graph
  • Protein engineering
  • Proteins
  • Solid modeling
  • Three-dimensional displays
  • Topology

Fingerprint

Dive into the research topics of 'Equivariant Line Graph Neural Network for Protein-Ligand Binding Affinity Prediction'. Together they form a unique fingerprint.

Cite this

Yi, Y., Wan, X., Zhao, K., Ou-Yang, L., & Zhao, P. (Accepted/In press). Equivariant Line Graph Neural Network for Protein-Ligand Binding Affinity Prediction. IEEE Journal of Biomedical and Health Informatics, 1-13. https://doi.org/10.1109/JBHI.2024.3383245