Engineering Critical Amino Acid Residues of Lanosterol Synthase to Improve the Production of Triterpenoids in Saccharomyces cerevisiae

Hao Guo, Huiyang Wang, Tongtong Chen, Liwei Guo, Lars M. Blank, Birgitta E. Ebert, Yi Xin Huo*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

7 Citations (Scopus)

Abstract

Triterpenoids are a subgroup of terpenoids and have wide applications in the food, cosmetics, and pharmaceutical industries. The heterologous production of various triterpenoids in Saccharomyces cerevisiae, as well as other microbes, has been successfully implemented as these production hosts not only produce the precursor of triterpenoids 2,3-oxidosqualene by the mevalonate pathway but also allow simple expression of plant membrane-anchored enzymes. Nevertheless, 2,3-oxidosqualene is natively converted to lanosterol catalyzed by the endogenous lanosterol synthase (Erg7p), causing low production of recombinant triterpenoids. While simple deletion of ERG7 was not effective, in this study, the critical amino acid residues of Erg7p were engineered to lower this critical enzyme activity. The engineered S. cerevisiae indeed accumulated 2,3-oxidosqualene up to 180 mg/L. Engineering triterpenoid synthesis into the ERG7-modified strain resulted in 7.3- and 3-fold increases in the titers of dammarane-type and lupane-type triterpenoids, respectively. This study presents an efficient inducer-free strategy for lowering Erg7p activity, thereby providing 2,3-oxidosqualene for the enhanced production of various triterpenoids.

Original languageEnglish
Pages (from-to)2685-2696
Number of pages12
JournalACS Synthetic Biology
Volume11
Issue number8
DOIs
Publication statusPublished - 19 Aug 2022

Keywords

  • Saccharomyces cerevisiae
  • flux redirection
  • lanosterol synthase
  • metabolic engineering
  • natural products
  • synthetic biology
  • triterpenoids

Fingerprint

Dive into the research topics of 'Engineering Critical Amino Acid Residues of Lanosterol Synthase to Improve the Production of Triterpenoids in Saccharomyces cerevisiae'. Together they form a unique fingerprint.

Cite this