Energy back-projective composition for 3-D coronary artery reconstruction

Weijian Cong, Jian Yang*, Yue Liu, Yongtian Wang

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

4 Citations (Scopus)

Abstract

This paper presents a novel energy back-projective composition model (EBPCM) for 3-D reconstruction of the coronary arteries from two mono-plane angiographic images. A major problem with the commonly used parameter deformable model is that the predefined correspondences may become non-strict matching after the curve evolution, which generally leads to large extra calculation errors. In this study, the energy field in the image is back-projected to 3-D space and decomposed into three independent components in the world coordinates centered at the iso-center of the C-arm. Then, the components from different views are composited together according to the rotation and scaling relationship of the imaging angles. The composited energy field hence is utilized as the external force to control the evolution of the vascular structure in 3-D space. As the driving force is iteratively updated according to energy in the two projection images, the non-strict matching can be effectively avoided. Also, the proposed method is very flexible, which can be composited with any energy fields such as Generalized Gradient Vector Flow (GGVF) and Potential Energy (PE) etc. Experiments demonstrate that the proposed method is very effective and robust, when using GGVF as the external force, the reconstruction RMS error can be reduced to about 0.595mm in the 3-D space.

Original languageEnglish
Title of host publication2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2013
Pages5151-5154
Number of pages4
DOIs
Publication statusPublished - 2013
Event2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2013 - Osaka, Japan
Duration: 3 Jul 20137 Jul 2013

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
ISSN (Print)1557-170X

Conference

Conference2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2013
Country/TerritoryJapan
CityOsaka
Period3/07/137/07/13

Fingerprint

Dive into the research topics of 'Energy back-projective composition for 3-D coronary artery reconstruction'. Together they form a unique fingerprint.

Cite this