Encoder-Decoder Contrast for Unsupervised Anomaly Detection in Medical Images

Jia Guo, Shuai Lu, Lize Jia, Weihang Zhang*, Huiqi Li*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)

Abstract

Unsupervised anomaly detection (UAD) aims to recognize anomalous images based on the training set that contains only normal images. In medical image analysis, UAD benefits from leveraging the easily obtained normal (healthy) images, avoiding the costly collecting and labeling of anomalous (unhealthy) images. Most advanced UAD methods rely on frozen encoder networks pre-trained using ImageNet for extracting feature representations. However, the features extracted from the frozen encoders that are borrowed from natural image domains coincide little with the features required in the target medical image domain. Moreover, optimizing encoders usually causes pattern collapse in UAD. In this paper, we propose a novel UAD method, namely Encoder-Decoder Contrast (EDC), which optimizes the entire network to reduce biases towards pre-trained image domain and orient the network in the target medical domain. We start from feature reconstruction approach that detects anomalies from reconstruction errors. Essentially, a contrastive learning paradigm is introduced to tackle the problem of pattern collapsing while optimizing the encoder and the reconstruction decoder simultaneously. In addition, to prevent instability and further improve performances, we propose to bring globality into the contrastive objective function. Extensive experiments are conducted across four medical image modalities including optical coherence tomography, color fundus image, brain MRI, and skin lesion image, where our method outperforms all current state-of-the-art UAD methods. Code is available at: https://github.com/guojiajeremy/EDC

Original languageEnglish
Pages (from-to)1102-1112
Number of pages11
JournalIEEE Transactions on Medical Imaging
Volume43
Issue number3
DOIs
Publication statusPublished - 1 Mar 2024

Keywords

  • Medical anomaly detection
  • anomaly localization
  • contrastive learning
  • feature reconstruction
  • unsupervised learning

Fingerprint

Dive into the research topics of 'Encoder-Decoder Contrast for Unsupervised Anomaly Detection in Medical Images'. Together they form a unique fingerprint.

Cite this