EEG denoising through a wide and deep echo state network optimized by UPSO algorithm

Weitong Sun, Yuping Su, Xia Wu, Xiaojun Wu*, Yumei Zhang

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

9 Citations (Scopus)

Abstract

In the complex environment of telemedicine, Electroencephalogram (EEG) signals are easily overwhelmed by noise, which affects the intelligent diagnosis of diseases. Since the time-frequency domain characteristics of some noise in EEG signals are complex and the distribution is unknown, and the spectrum of some noise overlaps with the original EEG signal spectrum, it is difficult to filter those noise by traditional methods. To tackle this problem, and considering the large data characteristics of EEG signals in the context of telemedicine, a wide-deep echo state networks (WDESN) with multiple reservoirs in parallel and stacked configuration is proposed for multivariate time series denoising. Firstly, stacking and paralleling multiple reservoirs, the deep features of signals can be extracted to complete the task of reconstructing signal from the noisy signal. Then, the Uniform Search Particle Swarm Optimization (UPSO) is used to optimize reservoir parameters of WDESN. Finally, the effectiveness of UPSO-WDESN is verified through experiments. Experiment results show that compared with existing models, the proposed UPSO-WDESN model can achieve better noise removal performance, while keeping more nonlinear feature of signals.

Original languageEnglish
Article number107149
JournalApplied Soft Computing
Volume105
DOIs
Publication statusPublished - Jul 2021
Externally publishedYes

Keywords

  • Artifacts removal
  • Electroencephalogram (EEG)
  • Reservoir
  • Uniform Search Particle Swarm Optimization (UPSO)
  • Wide-Deep Echo State Network (WDESN)

Fingerprint

Dive into the research topics of 'EEG denoising through a wide and deep echo state network optimized by UPSO algorithm'. Together they form a unique fingerprint.

Cite this