Design and Preparation of Localized Heat-Resistant Coating

Zaiming Lin, Yihan Chen, Zhuang Ma, Lihong Gao, Wenhua Chen, Guohua Chen, Chen Ma*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)

Abstract

Localized heat sources, such as flame guns and high-energy lasers, can cause severe damage to conventional materials. In this study, a novel localized heat-resistant coating with a high in-plane thermal conductivity was designed and prepared. Reduced graphene oxide (rGO) effectively improved the in-plane thermal conductivity of the polyvinyl alcohol (PVA) film, while maintaining the thermal insulation of the resin matrix in the through-plane direction. This characteristic of the rGO/PVA film was combined with the thermal insulation of boron-modified phenolic resin (BPF), and the prepared composite coating with two layers of rGO/PVA films effectively lowered the back-surface temperature in the flame ablation test from 151 to 107 °C. In addition, the area of the ablation-affected region of coating was increased to 103.6 cm2 from 31.9 cm2, indicating an excellent heat transfer performance. The layer-by-layer structure could realize the compatibility of high in-plane thermal conductivity and good through-plane thermal insulation. The synergy of these two different characteristics is demonstrated to be the key to improving the localized heat-resistant performance of the composite coating. This study effectively expands the application range of high-conductive film, and the obtained coating could act as a shield against butane flame, high energy lasers, and other localized heat.

Original languageEnglish
Article number3032
JournalPolymers
Volume14
Issue number15
DOIs
Publication statusPublished - Aug 2022

Keywords

  • composite coatings
  • high thermal conductivity
  • localized heat
  • reduced graphene oxide

Fingerprint

Dive into the research topics of 'Design and Preparation of Localized Heat-Resistant Coating'. Together they form a unique fingerprint.

Cite this