Design and Implementation of Deep Neural Network-Based Control for Automatic Parking Maneuver Process

Runqi Chai*, Antonios Tsourdos, Al Savvaris, Senchun Chai, Yuanqing Xia, C. L. Philip Chen

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

139 Citations (Scopus)

Abstract

This article focuses on the design, test, and validation of a deep neural network (DNN)-based control scheme capable of predicting optimal motion commands for autonomous ground vehicles (AGVs) during the parking maneuver process. The proposed design utilizes a multilayer structure. In the first layer, a desensitized trajectory optimization method is iteratively performed to establish a set of time-optimal parking trajectories with the consideration of noise-perturbed initial configurations. Subsequently, by using the preplanned optimal parking trajectory data set, several DNNs are trained in order to learn the functional relationship between the system state-control actions in the second layer. To obtain further improvements regarding the DNN performances, a simple yet effective data aggregation approach is designed and applied. These trained DNNs are then utilized as the motion controllers to generate feedback actions in real time. Numerical results were executed to demonstrate the effectiveness and the real-time applicability of using the proposed control scheme to plan and steer the AGV parking maneuver. Experimental results were also provided to justify the algorithm performance in real-world implementations.

Original languageEnglish
Pages (from-to)1400-1413
Number of pages14
JournalIEEE Transactions on Neural Networks and Learning Systems
Volume33
Issue number4
DOIs
Publication statusPublished - 1 Apr 2022

Keywords

  • Autonomous ground vehicles (AGVs)
  • Deep neural network (DNN)
  • Motion controller
  • Parking maneuver
  • Trajectory optimization

Fingerprint

Dive into the research topics of 'Design and Implementation of Deep Neural Network-Based Control for Automatic Parking Maneuver Process'. Together they form a unique fingerprint.

Cite this