Cryogenic damage mechanisms of CFRP laminates based on in-situ X-ray computed tomography characterization

Yuanchen Li, Jinxin Meng, Guohao Niu, Heng Yang, Panding Wang*, Hongshuai Lei*, Daining Fang

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

8 Citations (Scopus)

Abstract

Carbon fiber reinforced polymer (CFRP) composites possess excellent properties suitable for use in spacecraft liquid fuel tanks. However, the cryogenic reliability of composites remains challenging owing to the variation in mechanical responses under cryogenic environments. So far, most previous studies have focused on the cryogenic properties of composites, and little has been devoted to the cryogenic damage behaviors of laminates. Herein, the cryogenic damage evolution of CFRP laminates was investigated by micro-computed tomography (μCT) characterization and micromechanical analysis for the first time. To this end, in-situ μCT tensile tests for quasi-isotropic CFRP laminates were conducted at temperatures of 293 K, 193 K, and 93 K, and the observed cryogenic damage characteristics were analyzed. A micromechanical computational model was then developed, and the temperature-dependent constitutive model of epoxy resin was utilized to investigate the cryogenic damage evolution process of laminates. The effects of matrix property variation and thermal stresses on the cryogenic damage of laminates were examined, and the cryogenic fracture toughness for transverse cracking was deduced. The characterization results revealed a significantly increased damage volume fraction of laminates from 0.65% to 1.56% at cryogenic temperatures, mainly originating from the increased delamination (from 0.08% to 0.54%) and 90° ply transverse cracks (from 0.48% to 0.87%). The numerical analyses indicated the cryogenic brittle transition of the matrix as the primary factor responsible for the delamination, while the transverse cracks were influenced by matrix properties and thermal stresses. This study provides critical insight into the cryogenic damage behavior of CFRP laminates, essential for cryogenic applications of composites.

Original languageEnglish
Article number110413
JournalComposites Science and Technology
Volume247
DOIs
Publication statusPublished - 1 Mar 2024

Keywords

  • Computed tomography
  • Cryogenic damage behaviors
  • Micromechanical analysis
  • Polymer composites

Fingerprint

Dive into the research topics of 'Cryogenic damage mechanisms of CFRP laminates based on in-situ X-ray computed tomography characterization'. Together they form a unique fingerprint.

Cite this