Crucial role of charge transporting layers on ion migration in perovskite solar cells

Abasi Abudulimu*, Lang Liu, Guilin Liu, Nijiati Aimaiti, Bohuslav Rezek, Qi Chen

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

15 Citations (Scopus)

Abstract

The device preconditioning dependent hysteresis and the consequential performance degradation hinder the actual performance and stability of the perovskite solar cells. Ion migration and charge trapping in the perovskite with large contribution from grain boundaries are the most common interpretations for the hysteresis. Yet, the high performing devices often include intermediate hole and electron transporting layers, which can further complicate the dynamical process in the device. Here, by using Kelvin Probe Force Microscopy and Confocal Photoluminescence Microscopy, we elucidate the impact of charge-transporting layers and excess MAI on the spatial and temporal variations of the photovoltage on the MAPbI3-based solar cells. By studying the devices layer by layer, we found that the light-induced ion migration occurs predominantly in the presence of an imbalanced charge extraction in the solar cells, and the charge transporting layers play crucial role in suppressing it. Careful selection and processing of the electron and hole-transporting materials are thus essential for making perovskite solar cells free from the ion migration effect.

Original languageEnglish
Pages (from-to)132-137
Number of pages6
JournalJournal of Energy Chemistry
Volume47
DOIs
Publication statusPublished - Aug 2020

Keywords

  • Charge transporting material
  • Ion migration
  • KPFM
  • Perovskite solar cells

Fingerprint

Dive into the research topics of 'Crucial role of charge transporting layers on ion migration in perovskite solar cells'. Together they form a unique fingerprint.

Cite this