TY - GEN
T1 - Coupled Point Process-based Sequence Modeling for Privacy-preserving Network Alignment
AU - Luo, Dixin
AU - Cheng, Haoran
AU - Li, Qingbin
AU - Xu, Hongteng
N1 - Publisher Copyright:
© 2023 International Joint Conferences on Artificial Intelligence. All rights reserved.
PY - 2023
Y1 - 2023
N2 - Network alignment aims at finding the correspondence of nodes across different networks, which is significant for many applications, e.g., fraud detection and crime network tracing across platforms. In practice, however, accessing the topological information of different networks is often restricted and even forbidden, considering privacy and security issues. Instead, what we observed might be the event sequences of the networks' nodes in the continuous-time domain. In this study, we develop a coupled neural point process-based (CPP) sequence modeling strategy, which provides a solution to privacy-preserving network alignment based on the event sequences. Our CPP consists of a coupled node embedding layer and a neural point process module. The coupled node embedding layer embeds one network's nodes and explicitly models the alignment matrix between the two networks. Accordingly, it parameterizes the node embeddings of the other network by the push-forward operation. Given the node embeddings, the neural point process module jointly captures the dynamics of the two networks' event sequences. We learn the CPP model in a maximum likelihood estimation framework with an inverse optimal transport (IOT) regularizer. Experiments show that our CPP is compatible with various point process backbones and is robust to the model misspecification issue, which achieves encouraging performance on network alignment. The code is available at https://github.com/Dixin-s-Lab/CNPP.
AB - Network alignment aims at finding the correspondence of nodes across different networks, which is significant for many applications, e.g., fraud detection and crime network tracing across platforms. In practice, however, accessing the topological information of different networks is often restricted and even forbidden, considering privacy and security issues. Instead, what we observed might be the event sequences of the networks' nodes in the continuous-time domain. In this study, we develop a coupled neural point process-based (CPP) sequence modeling strategy, which provides a solution to privacy-preserving network alignment based on the event sequences. Our CPP consists of a coupled node embedding layer and a neural point process module. The coupled node embedding layer embeds one network's nodes and explicitly models the alignment matrix between the two networks. Accordingly, it parameterizes the node embeddings of the other network by the push-forward operation. Given the node embeddings, the neural point process module jointly captures the dynamics of the two networks' event sequences. We learn the CPP model in a maximum likelihood estimation framework with an inverse optimal transport (IOT) regularizer. Experiments show that our CPP is compatible with various point process backbones and is robust to the model misspecification issue, which achieves encouraging performance on network alignment. The code is available at https://github.com/Dixin-s-Lab/CNPP.
UR - http://www.scopus.com/inward/record.url?scp=85170391064&partnerID=8YFLogxK
U2 - 10.24963/ijcai.2023/678
DO - 10.24963/ijcai.2023/678
M3 - Conference contribution
AN - SCOPUS:85170391064
T3 - IJCAI International Joint Conference on Artificial Intelligence
SP - 6112
EP - 6120
BT - Proceedings of the 32nd International Joint Conference on Artificial Intelligence, IJCAI 2023
A2 - Elkind, Edith
PB - International Joint Conferences on Artificial Intelligence
T2 - 32nd International Joint Conference on Artificial Intelligence, IJCAI 2023
Y2 - 19 August 2023 through 25 August 2023
ER -