TY - JOUR
T1 - Cooperative multiple interactions of donor-π-acceptor dyes enhance the efficiency and stability of perovskite solar cells
AU - Hou, Xiufang
AU - Zhang, Weiyi
AU - Li, Quan Song
N1 - Publisher Copyright:
© 2023 The Royal Society of Chemistry.
PY - 2023
Y1 - 2023
N2 - Surface passivation by organic dyes has been an effective strategy for simultaneous enhancement of the efficiency and stability of perovskite solar cells. However, lack of in-depth understanding of how subtle structural changes in dyes leads to distinctly different passivation effects is a challenge for screening effective passivation molecules (PMs). In an experiment done by Han et al. (Adv. Energy Mater., 2019, 9, 1803766), three donor-π-acceptor (D-π-A) dyes (SP1, SP2, and SP3) with distinct electron donors have been applied to passivate the perovskite surface, where the efficiency and stability of PSCs are quite different. Herein, we carried out first-principles calculations and ab initio molecular dynamics (AIMD) simulations on the structures and electronic properties of SP1, SP2, SP3, and their passivated perovskite surfaces. Our results showed that SP3 enhances the carrier transfer rate, electric field, and absorption region compared to SP1 and SP2. Moreover, AIMD simulations reveal that the cooperative multiple interactions of O-Pb, S-Pb, and H-I between SP3 and the perovskite surface result in a stronger passivation effect in a humid environment than that of SP1 and SP2. This work is expected to pave the way for screening dye passivation molecules to endow perovskite solar cells with high efficiency and stability.
AB - Surface passivation by organic dyes has been an effective strategy for simultaneous enhancement of the efficiency and stability of perovskite solar cells. However, lack of in-depth understanding of how subtle structural changes in dyes leads to distinctly different passivation effects is a challenge for screening effective passivation molecules (PMs). In an experiment done by Han et al. (Adv. Energy Mater., 2019, 9, 1803766), three donor-π-acceptor (D-π-A) dyes (SP1, SP2, and SP3) with distinct electron donors have been applied to passivate the perovskite surface, where the efficiency and stability of PSCs are quite different. Herein, we carried out first-principles calculations and ab initio molecular dynamics (AIMD) simulations on the structures and electronic properties of SP1, SP2, SP3, and their passivated perovskite surfaces. Our results showed that SP3 enhances the carrier transfer rate, electric field, and absorption region compared to SP1 and SP2. Moreover, AIMD simulations reveal that the cooperative multiple interactions of O-Pb, S-Pb, and H-I between SP3 and the perovskite surface result in a stronger passivation effect in a humid environment than that of SP1 and SP2. This work is expected to pave the way for screening dye passivation molecules to endow perovskite solar cells with high efficiency and stability.
UR - http://www.scopus.com/inward/record.url?scp=85159139916&partnerID=8YFLogxK
U2 - 10.1039/d3cp00704a
DO - 10.1039/d3cp00704a
M3 - Article
C2 - 37157860
AN - SCOPUS:85159139916
SN - 1463-9076
JO - Physical Chemistry Chemical Physics
JF - Physical Chemistry Chemical Physics
ER -