TY - JOUR
T1 - Controllable Plasmonic Nanostructures induced by Dual-wavelength Femtosecond Laser Irradiation
AU - Han, Weina
AU - Jiang, Lan
AU - Li, Xiaowei
AU - Wang, Qingsong
AU - Wang, Shaojun
AU - Hu, Jie
AU - Lu, Yongfeng
N1 - Publisher Copyright:
© 2017, The Author(s).
PY - 2017/12/1
Y1 - 2017/12/1
N2 - We demonstrated an abnormal double-peak (annular shaped) energy deposition through dual-wavelength synthesis of the fundamental frequency (ω) and the second-harmonic frequency (2ω) of a femtosecond (fs) Ti:sapphire laser. The annular shaped distribution of the dual-wavelength fs laser was confirmed through real beam shape detection. This uniquely simple and flexible technique enables the formation of functional plasmonic nanostructures. We applied this double-peak fs-laser-induced dewetting effect to the controlled fabrication and precise deposition of Au nanostructures, by using a simple, lithography-free, and single-step process. In this process, the double-peak energy-shaped fs laser pulse induces surface patterning of a thin film followed by nanoscale hydrodynamic instability, which is highly controllable under specific irradiation conditions. Nanostructure morphology (shape, size, and distribution) modulation can be achieved by adjusting the laser irradiation parameters, and the subsequent ion-beam polishing enables further dimensional reduction and removal of the surrounding film. The unique optical properties of the resulting nanostructure are highly sensitive to the shape and size of the nanostructure. In contrast to a nanoparticle, the resonance-scattering spectrum of an Au nanobump exhibites two resonance peaks. These suggest that the dual-wavelength fs laser-based dewetting of thin films can be an effective means for the scalable manufacturing of patterned-functional nanostructures.
AB - We demonstrated an abnormal double-peak (annular shaped) energy deposition through dual-wavelength synthesis of the fundamental frequency (ω) and the second-harmonic frequency (2ω) of a femtosecond (fs) Ti:sapphire laser. The annular shaped distribution of the dual-wavelength fs laser was confirmed through real beam shape detection. This uniquely simple and flexible technique enables the formation of functional plasmonic nanostructures. We applied this double-peak fs-laser-induced dewetting effect to the controlled fabrication and precise deposition of Au nanostructures, by using a simple, lithography-free, and single-step process. In this process, the double-peak energy-shaped fs laser pulse induces surface patterning of a thin film followed by nanoscale hydrodynamic instability, which is highly controllable under specific irradiation conditions. Nanostructure morphology (shape, size, and distribution) modulation can be achieved by adjusting the laser irradiation parameters, and the subsequent ion-beam polishing enables further dimensional reduction and removal of the surrounding film. The unique optical properties of the resulting nanostructure are highly sensitive to the shape and size of the nanostructure. In contrast to a nanoparticle, the resonance-scattering spectrum of an Au nanobump exhibites two resonance peaks. These suggest that the dual-wavelength fs laser-based dewetting of thin films can be an effective means for the scalable manufacturing of patterned-functional nanostructures.
UR - http://www.scopus.com/inward/record.url?scp=85057161809&partnerID=8YFLogxK
U2 - 10.1038/s41598-017-16374-6
DO - 10.1038/s41598-017-16374-6
M3 - Article
C2 - 29229930
AN - SCOPUS:85057161809
SN - 2045-2322
VL - 7
JO - Scientific Reports
JF - Scientific Reports
IS - 1
M1 - 17333
ER -