Conditional GAN-based deep network for seamless large-FOV imaging by camera array

Weihang Zhang, Lianglong Li, Jinli Suo*, Qionghai Dai

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Due to limited spatial bandwidth, one has to compromise between large field of view and high spatial resolution in both photography and microscopy. This dilemma largely hampers revealing fine details and global structures of the target scene simultaneously. Recently, a mainstream method is formed by utilizing multiple sensors for synchronous acquisition across different sub-FOVs with high resolution and stitching the patches according to the spatial position of the cameras. Various inpainting algorithms have been proposed to eliminate the intensity discontinuities, but conventional optimization methods are prone to misalignment, seaming artifacts or long processing time, and thus unable to achieve dynamic gap elimination. By taking advantage of generative adversarial networks (GANs) on image generation and padding, we propose a conditional GAN-based deep neural network for seamless gap inpainting. Specifically, a short series of displaced images are acquired to characterize the system configuration, under which we generate patch pairs with and without gap for deep network training. After supervised learning, we can achieve seamless inpainting in gap regions. To validate the proposed approach, we apply our approach on real data captured by large-scale imaging systems and demonstrate that the missing information at gaps can be retrieved successfully. We believe the proposed method holds potential for all-round observation in various fields including urban surveillance and systems biology.

Original languageEnglish
Title of host publicationOptoelectronic Imaging and Multimedia Technology IX
EditorsQionghai Dai, Tsutomu Shimura, Zhenrong Zheng
PublisherSPIE
ISBN (Electronic)9781510657007
DOIs
Publication statusPublished - 2022
Externally publishedYes
EventOptoelectronic Imaging and Multimedia Technology IX 2022 - Virtual, Online, China
Duration: 5 Dec 202211 Dec 2022

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume12317
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X

Conference

ConferenceOptoelectronic Imaging and Multimedia Technology IX 2022
Country/TerritoryChina
CityVirtual, Online
Period5/12/2211/12/22

Keywords

  • camera array
  • gap elimination
  • generative adversarial network
  • image inpainting
  • large-scale imaging

Fingerprint

Dive into the research topics of 'Conditional GAN-based deep network for seamless large-FOV imaging by camera array'. Together they form a unique fingerprint.

Cite this