TY - GEN
T1 - CoinSeg
T2 - 2023 IEEE/CVF International Conference on Computer Vision, ICCV 2023
AU - Zhang, Zekang
AU - Gao, Guangyu
AU - Jiao, Jianbo
AU - Liu, Chi Harold
AU - Wei, Yunchao
N1 - Publisher Copyright:
© 2023 IEEE.
PY - 2023
Y1 - 2023
N2 - Class incremental semantic segmentation aims to strike a balance between the model's stability and plasticity by maintaining old knowledge while adapting to new concepts. However, most state-of-the-art methods use the freeze strategy for stability, which compromises the model's plasticity. In contrast, releasing parameter training for plasticity could lead to the best performance for all categories, but this requires discriminative feature representation. Therefore, we prioritize the model's plasticity and propose the Contrast inter- and intra-class representations for Incremental Segmentation (CoinSeg), which pursues discriminative representations for flexible parameter tuning. Inspired by the Gaussian mixture model that samples from a mixture of Gaussian distributions, CoinSeg emphasizes intra-class diversity with multiple contrastive representation centroids. Specifically, we use mask proposals to identify regions with strong objectness that are likely to be diverse instances/centroids of a category. These mask proposals are then used for contrastive representations to reinforce intra-class diversity. Meanwhile, to avoid bias from intra-class diversity, we also apply category-level pseudo-labels to enhance category-level consistency and inter-category diversity. Additionally, CoinSeg ensures the model's stability and alleviates forgetting through a specific flexible tuning strategy. We validate CoinSeg on Pascal VOC 2012 and ADE20K datasets with multiple incremental scenarios and achieve superior results compared to previous state-of-the-art methods, especially in more challenging and realistic long-term scenarios. Code is available at https://github.com/zkzhang98/CoinSeg.
AB - Class incremental semantic segmentation aims to strike a balance between the model's stability and plasticity by maintaining old knowledge while adapting to new concepts. However, most state-of-the-art methods use the freeze strategy for stability, which compromises the model's plasticity. In contrast, releasing parameter training for plasticity could lead to the best performance for all categories, but this requires discriminative feature representation. Therefore, we prioritize the model's plasticity and propose the Contrast inter- and intra-class representations for Incremental Segmentation (CoinSeg), which pursues discriminative representations for flexible parameter tuning. Inspired by the Gaussian mixture model that samples from a mixture of Gaussian distributions, CoinSeg emphasizes intra-class diversity with multiple contrastive representation centroids. Specifically, we use mask proposals to identify regions with strong objectness that are likely to be diverse instances/centroids of a category. These mask proposals are then used for contrastive representations to reinforce intra-class diversity. Meanwhile, to avoid bias from intra-class diversity, we also apply category-level pseudo-labels to enhance category-level consistency and inter-category diversity. Additionally, CoinSeg ensures the model's stability and alleviates forgetting through a specific flexible tuning strategy. We validate CoinSeg on Pascal VOC 2012 and ADE20K datasets with multiple incremental scenarios and achieve superior results compared to previous state-of-the-art methods, especially in more challenging and realistic long-term scenarios. Code is available at https://github.com/zkzhang98/CoinSeg.
UR - http://www.scopus.com/inward/record.url?scp=85174792358&partnerID=8YFLogxK
U2 - 10.1109/ICCV51070.2023.00084
DO - 10.1109/ICCV51070.2023.00084
M3 - Conference contribution
AN - SCOPUS:85174792358
T3 - Proceedings of the IEEE International Conference on Computer Vision
SP - 843
EP - 853
BT - Proceedings - 2023 IEEE/CVF International Conference on Computer Vision, ICCV 2023
PB - Institute of Electrical and Electronics Engineers Inc.
Y2 - 2 October 2023 through 6 October 2023
ER -