TY - GEN
T1 - Chinese Semantic Matching with Multi-granularity Alignment and Feature Fusion
AU - Zhao, Pengyu
AU - Lu, Wenpeng
AU - Li, Yifeng
AU - Yu, Jiguo
AU - Jian, Ping
AU - Zhang, Xu
N1 - Publisher Copyright:
© 2021 IEEE.
PY - 2021/7/18
Y1 - 2021/7/18
N2 - Chinese semantic matching is a fundamental task in natural language processing, which is critical and yet challenging for a series of downstream tasks. Although recent work on text representation learning has shown its potential in improving the performance on semantic matching, relatively limited work has been done on exploring the relevant interactive information between two granularity of Chinese text, i.e., character and word. Existing methods usually focus on capturing the interactive features from single granularity, which lead to inefficient text representation. Also, they typically fail to consider the fusion of features from different granularity. As a result, they only achieve limited performance improvement. This paper proposes a novel Chinese semantic matching model based on multi-granularity alignment and feature fusion (MAFFo). To be specific, we first encode the texts from different granularity, which are further handled with soft-alignment attention mechanism to extract relevant interactive information between texts on different granularity. In addition, we devise a feature fusion structure to merge the features from different granularity to generate an ideal representation for the pair of input text sequences, followed by a sigmoid function to judge the semantic matching degree. Extensive experiments on the publicly available dataset BQ demonstrate that our model can effectively improve the performance of semantic matching task and achieve comparable performance with BERT-based methods.
AB - Chinese semantic matching is a fundamental task in natural language processing, which is critical and yet challenging for a series of downstream tasks. Although recent work on text representation learning has shown its potential in improving the performance on semantic matching, relatively limited work has been done on exploring the relevant interactive information between two granularity of Chinese text, i.e., character and word. Existing methods usually focus on capturing the interactive features from single granularity, which lead to inefficient text representation. Also, they typically fail to consider the fusion of features from different granularity. As a result, they only achieve limited performance improvement. This paper proposes a novel Chinese semantic matching model based on multi-granularity alignment and feature fusion (MAFFo). To be specific, we first encode the texts from different granularity, which are further handled with soft-alignment attention mechanism to extract relevant interactive information between texts on different granularity. In addition, we devise a feature fusion structure to merge the features from different granularity to generate an ideal representation for the pair of input text sequences, followed by a sigmoid function to judge the semantic matching degree. Extensive experiments on the publicly available dataset BQ demonstrate that our model can effectively improve the performance of semantic matching task and achieve comparable performance with BERT-based methods.
UR - http://www.scopus.com/inward/record.url?scp=85116434014&partnerID=8YFLogxK
U2 - 10.1109/IJCNN52387.2021.9534130
DO - 10.1109/IJCNN52387.2021.9534130
M3 - Conference contribution
AN - SCOPUS:85116434014
T3 - Proceedings of the International Joint Conference on Neural Networks
BT - IJCNN 2021 - International Joint Conference on Neural Networks, Proceedings
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2021 International Joint Conference on Neural Networks, IJCNN 2021
Y2 - 18 July 2021 through 22 July 2021
ER -