CCLane: Concise Curve Anchor-Based Lane Detection Model with MLP-Mixer

Fan Yang, Yanan Zhao*, Li Gao, Huachun Tan, Weijin Liu, Xue mei Chen, Shijuan Yang

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Lane detection needs to meet the real-time requirements and efficiently utilize both local and global information on the feature map. In this paper, we propose a new lane detection model called CCLane, which uses the pre-set curve anchor method to better utilize the prior information of the lane. Based on the Cross Layer Refinement method for extracting local information at different levels, we propose a way to combine MLP-Mixer and spatial convolution to obtain global information and achieve information transmission between lanes, which flexibly and efficiently integrates local and global information. We also extend the DIoU loss function to lane detection and design the LDIoU loss function. The method is evaluated on two widely used lane detection datasets, and the results show that our method performs well.

Original languageEnglish
Title of host publicationPattern Recognition and Computer Vision - 6th Chinese Conference, PRCV 2023, Proceedings
EditorsQingshan Liu, Hanzi Wang, Rongrong Ji, Zhanyu Ma, Weishi Zheng, Hongbin Zha, Xilin Chen, Liang Wang
PublisherSpringer Science and Business Media Deutschland GmbH
Pages376-387
Number of pages12
ISBN (Print)9789819984343
DOIs
Publication statusPublished - 2024
Event6th Chinese Conference on Pattern Recognition and Computer Vision, PRCV 2023 - Xiamen, China
Duration: 13 Oct 202315 Oct 2023

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume14427 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference6th Chinese Conference on Pattern Recognition and Computer Vision, PRCV 2023
Country/TerritoryChina
CityXiamen
Period13/10/2315/10/23

Keywords

  • Lane detection
  • Line anchor
  • MLP

Fingerprint

Dive into the research topics of 'CCLane: Concise Curve Anchor-Based Lane Detection Model with MLP-Mixer'. Together they form a unique fingerprint.

Cite this