Abstract
Edge supercurrent has attracted great interest recently due to its crucial role in achieving and manipulating topological superconducting states. Proximity-induced superconductivity has been realized in quantum Hall and quantum spin Hall edge states, as well as in higher-order topological hinge states. Non-Hermitian skin effect, the aggregation of non-Bloch eigenstates at open boundaries, promises an abnormal edge channel. Here we report the observation of broad edge supercurrent in Dirac semimetal Cd3As2-based Josephson junctions. The as-grown Cd3As2 nanoplates are electron-doped by intrinsic defects, which enhance the non-Hermitian perturbations. The superconducting quantum interference indicates edge supercurrent with a width of ~1.6 μm and a magnitude of ~1 μA at 10 mK. The wide and large edge supercurrent is inaccessible for a conventional edge system and suggests the presence of non-Hermitian skin effect. A supercurrent nonlocality is also observed. The interplay between band topology and non-Hermiticity is beneficial for exploiting exotic topological matter.
Original language | English |
---|---|
Article number | 6162 |
Journal | Nature Communications |
Volume | 14 |
Issue number | 1 |
DOIs | |
Publication status | Published - Dec 2023 |
Externally published | Yes |