Automatic Audio Augmentation for Requests Sub-Challenge

Yanjie Sun, Kele Xu*, Chaorun Liu, Yong Dou, Kun Qian

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Citations (Scopus)

Abstract

This paper presents our solution for the Requests Sub-challenge of the ACM Multimedia 2023 Computational Paralinguistics Challenge. Drawing upon the framework of self-supervised learning, we put forth an automated data augmentation technique for audio classification, accompanied by a multi-channel fusion strategy aimed at enhancing overall performance. Specifically, to tackle the issue of imbalanced classes in complaint classification, we propose an audio data augmentation method that generates appropriate augmentation strategies for the challenge dataset. Furthermore, recognizing the distinctive characteristics of the dual-channel HC-C dataset, we individually evaluate the classification performance of the left channel, right channel, channel difference, and channel sum, subsequently selecting the optimal integration approach. Our approach yields a significant improvement in performance when compared to the competitive baselines, particularly in the context of the complaint task. Moreover, our method demonstrates noteworthy cross-task transferability.

Original languageEnglish
Title of host publicationMM 2023 - Proceedings of the 31st ACM International Conference on Multimedia
PublisherAssociation for Computing Machinery, Inc
Pages9482-9486
Number of pages5
ISBN (Electronic)9798400701085
DOIs
Publication statusPublished - 26 Oct 2023
Event31st ACM International Conference on Multimedia, MM 2023 - Ottawa, Canada
Duration: 29 Oct 20233 Nov 2023

Publication series

NameMM 2023 - Proceedings of the 31st ACM International Conference on Multimedia

Conference

Conference31st ACM International Conference on Multimedia, MM 2023
Country/TerritoryCanada
CityOttawa
Period29/10/233/11/23

Keywords

  • audio classification
  • automatic audio augmentation
  • computational paralinguistics
  • data augmentation

Fingerprint

Dive into the research topics of 'Automatic Audio Augmentation for Requests Sub-Challenge'. Together they form a unique fingerprint.

Cite this