Abstract
The impact response of a composite structure consisting of a metal-packaged ceramic interlayer and an ultra-high molecular weight polyethylene (UHMWPE) laminate has been studied through a ballistic test and numerical simulation. The studied structure exhibits 50% higher anti-penetration performance than the traditional ceramic/metal structure with the same areal density. The metal-packaged ceramic interlayer and the UHMWPE laminate are key components in resisting the penetration. By using a metal frame to impose three-dimensional constraints on ceramic tiles, the metal-packaged ceramic interlayer can limit the crushing of the ceramic and contain the broken ceramic fragment to improve the erosion of the projectile. The large deformation of UHMWPE laminate absorbs a large amount of energy from the projectile. By decreasing the amplitude of the shock wave and changing the distribution of the impact load in the structure, the projectile has longer residence time on the interlayer. The anti-penetration performance shows within 10% variation when the impact position is varied. Due to the asymmetric deformation and high elastic recovery ability of the UHMWPE laminate, the projectile trajectory deflection is increased, and the broken ceramic fragments are restrained, thereby mitigating after-effect damage caused by the projectile after penetrating the structure.
Original language | English |
---|---|
Article number | 2469 |
Journal | Materials |
Volume | 16 |
Issue number | 6 |
DOIs | |
Publication status | Published - Mar 2023 |
Keywords
- UHMWPE laminate
- anti-penetration performance
- failure mechanisms
- metal-packaged ceramic interlayer