Abstract
The interaction between Li0.33La0.56TiO3 (LLTO) and metallic lithium leads to severe interfacial instability of LLTO-containing solid-state electrolytes with a lithium metal anode. To improve the interfacial stability, a heterogeneous composite electrolyte PVDF-HFP@LLTO/PEO (PLTP) is designed and fabricated with a PEO electrolyte layer adhered to the PVDF-HFP@LLTO (PLT) electrolyte membrane. The PLTP heterogeneous composite electrolyte exhibits a superior ionic conductivity of 3.23 × 10−4 S cm−1 at 60 °C and a highly stable electrochemical window of up to 4.7 V (vs. Li/Li+). Remarkably, taking advantage of the effective protection of the PEO electrolyte layer, the chemical stability at the electrolyte/lithium metal anode interface is significantly enhanced. As a result, solid-state Li||LiFePO4 and Li||LiNi0.6Co0.2Mn0.2O2 batteries with the heterogeneous electrolyte exhibit an impressive electrochemical performance with high Coulombic efficiency and stable cycling capability. The strengthened interfacial stability enables the heterogeneous electrolyte to be a promising alternative for the further development of solid-state lithium metal batteries.
Original language | English |
---|---|
Pages (from-to) | 14064-14074 |
Number of pages | 11 |
Journal | Dalton Transactions |
Volume | 52 |
Issue number | 39 |
DOIs | |
Publication status | Published - 8 Sept 2023 |