An AWID and AWIS X-By-Wire UGV: Design and Hierarchical Chassis Dynamics Control

Jun Ni*, Jibin Hu, Changle Xiang

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

23 Citations (Scopus)

Abstract

In this paper, an all-wheel independently driven and all-wheel independently steered unmanned ground vehicle (UGV) is described. This paper investigates the hierarchical chassis yaw dynamics control (CYDC) and the tyre force control of the UGV in the remote control mode (RCM). The hierarchical CYDC scheme in RCM is proposed. As the key part in the control scheme, a yaw moment controller is proposed to deal with the oversteer problem of the UGV. Through the robust-based pole placement technique, the ideal poles' zones of the lateral UGV dynamics system are able to be tuned to meet different dynamics behavior requirements in different UGV tasks. The robust state feedback yaw dynamics controller is investigated based on the linear matrix inequalities approach. It considers the unavoidable parametric disturbance and uncertainty, such as the variation of the UGV's mass, yaw inertia, and tyre-road characteristics. In addition, in order to improve its performance in off-road conditions, the tyre traction force distribution algorithm and sliding mode wheel slip controller are designed to negotiate uneven terrains. The experiments in paved and off-road conditions are conducted to demonstrate the performance of the proposed controller.

Original languageEnglish
Article number8359464
Pages (from-to)654-666
Number of pages13
JournalIEEE Transactions on Intelligent Transportation Systems
Volume20
Issue number2
DOIs
Publication statusPublished - Feb 2019

Keywords

  • Unmanned ground vehicle
  • X-by-wire
  • chassis dynamics control
  • mobile robot
  • robust control

Fingerprint

Dive into the research topics of 'An AWID and AWIS X-By-Wire UGV: Design and Hierarchical Chassis Dynamics Control'. Together they form a unique fingerprint.

Cite this