An attitude estimation system for amphibious spherical robots

Liwei Shi*, Rui Xiao, Shuxiang Guo, Ping Guo, Shaowu Pan, Yanlin He

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

13 Citations (Scopus)

Abstract

As one of the most effective tools for exploring the ocean, automatic underwater vehicles have attracted a lot of attentions for years. But some key problems have not been solved properly. It is especially difficult to design underwater vehicles in small size. In this paper, three inertial sensors were adopted to fabricate an attitude estimation system, which provided posture information for our amphibious spherical robot to realize motion control and autonomous navigation. The pitch, roll and heading angel were acquired from current robot attitude matrix, which was calculated from the quaternion algorithm. And the attitude was corrected by the fusion of accelerometer and magnetic sensor. Experimental results verified the validation and precision of the robotic attitude estimation system. It has manifested that the system is effective to realize the robot control and navigation.

Original languageEnglish
Title of host publication2015 IEEE International Conference on Mechatronics and Automation, ICMA 2015
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2076-2081
Number of pages6
ISBN (Electronic)9781479970964
DOIs
Publication statusPublished - 2 Sept 2015
Event12th IEEE International Conference on Mechatronics and Automation, ICMA 2015 - Beijing, China
Duration: 2 Aug 20155 Aug 2015

Publication series

Name2015 IEEE International Conference on Mechatronics and Automation, ICMA 2015

Conference

Conference12th IEEE International Conference on Mechatronics and Automation, ICMA 2015
Country/TerritoryChina
CityBeijing
Period2/08/155/08/15

Keywords

  • Amphibious spherical robot
  • Attitude calculation
  • Quaternion

Fingerprint

Dive into the research topics of 'An attitude estimation system for amphibious spherical robots'. Together they form a unique fingerprint.

Cite this