TY - GEN
T1 - A Subject-Adaptive Brain State Decoding Model via Ensemble Transfer Learning
AU - Wei, Fulin
AU - Jia, Tianyuan
AU - Li, Ziyu
AU - Pei, Zhaodi
AU - Wu, Xia
N1 - Publisher Copyright:
© 2023 IEEE.
PY - 2023
Y1 - 2023
N2 - The cross-subject variability poses a great challenge to the practical application of the brain state decoding model. Although many transfer learning methods have been used to solve this problem, most of them directly combine existing subjects into a mixed source domain, ignoring the differences among multiple existing subjects. It's hard to align the target subject's data with the mixed source domain. Thus, we aim to reduce the cross-subject variability among different subjects and make full use of the rich information from them. We propose an ensemble transfer learning (ETL) method based on transfer joint matching to construct a subject-adaptive decoding model in an ensemble fashion. ETL can reduce the differences between the pairs of subjects, as well as the differences among multiple existing subjects. We found that many-to-one scheme could improve the performance with more data from multiple existing subjects, compared with one-to-one scheme, while the standard deviations of one-to-one schemes were much smaller. Moreover, the results of comparison methods and ablation experiments proved the effectiveness of our ETL method to decode brain state.
AB - The cross-subject variability poses a great challenge to the practical application of the brain state decoding model. Although many transfer learning methods have been used to solve this problem, most of them directly combine existing subjects into a mixed source domain, ignoring the differences among multiple existing subjects. It's hard to align the target subject's data with the mixed source domain. Thus, we aim to reduce the cross-subject variability among different subjects and make full use of the rich information from them. We propose an ensemble transfer learning (ETL) method based on transfer joint matching to construct a subject-adaptive decoding model in an ensemble fashion. ETL can reduce the differences between the pairs of subjects, as well as the differences among multiple existing subjects. We found that many-to-one scheme could improve the performance with more data from multiple existing subjects, compared with one-to-one scheme, while the standard deviations of one-to-one schemes were much smaller. Moreover, the results of comparison methods and ablation experiments proved the effectiveness of our ETL method to decode brain state.
UR - http://www.scopus.com/inward/record.url?scp=85160637424&partnerID=8YFLogxK
U2 - 10.1109/NER52421.2023.10123889
DO - 10.1109/NER52421.2023.10123889
M3 - Conference contribution
AN - SCOPUS:85160637424
T3 - International IEEE/EMBS Conference on Neural Engineering, NER
BT - 11th International IEEE/EMBS Conference on Neural Engineering, NER 2023 - Proceedings
PB - IEEE Computer Society
T2 - 11th International IEEE/EMBS Conference on Neural Engineering, NER 2023
Y2 - 25 April 2023 through 27 April 2023
ER -