Abstract
Uncertainty and nonlinearity in the depth control of remotely operated vehicles (ROVs) have been widely studied, especially in complex underwater environments. To improve the motion performance of ROVs and enhance their robustness, the model of ROV depth control in complex water environments was developed. The developed control scheme of interval type-2 fuzzy proportional–integral–derivative control (IT2FPID) is based on proportional–integral–derivative control (PID) and interval type-2 fuzzy logic control (IT2FLC). The performance indicators were used to evaluate the immunity of the controller type to external disturbances. The overshoot of 0.3% and settling time of 7.5 s of IT2FPID seem to be more robust compared to those of type-1 fuzzy proportional–integral–derivative (T1FPID) and PID.
Original language | English |
---|---|
Article number | 821 |
Journal | Sensors |
Volume | 23 |
Issue number | 2 |
DOIs | |
Publication status | Published - Jan 2023 |
Keywords
- ROV
- interval type-2 fuzzy system
- type-1 fuzzy system